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X-ray imaging spectroscopy of Supernova remnants (SNRs) enables us to es-
timate the abundances and spatial distribution of heavy elements synthe-
sized by the progenitors. This information provide us with many insights
into the evolution process and explosion mechanism of the progenitors. Im-
provement of the performance of X-ray detectors have revealed that the for-
mation process, ionization state, and X-ray emission process of SNRs are
more complex than that expected by the conventional picture. For example,
recent studies point out the importance of charge exchange (CX) and reso-
nance scattering (RS) in SNRs. Since signs of the RS or CX are expected to
be found in intensity ratios of multiplet lines (e.g., OVII Hea), which cannot
be resolved with widely-used detectors such as CCDs, it is difficult to ob-
tain the observational evidence for CX or RS. If we can quantify the effects
of these processes, we can measure several important information such as
microturbulence velocities and 3D structure of SNRs.

We performed a high-resolution X-ray spectroscopy of N49, J0453.6�6829
with the RGS onboard XMM-Newton to obtain the observational evidence of
CX and RS. The RGS spectrum of N49 shows a high G-ratio of OVII Hea
lines as well as OVIII Lyb/a and FeXVII (3s–2p)/(3d–2p) ratios, which can-
not be explained by the emission from an optically thin thermal plasma.
These line ratios can be well explained by the effect of RS. In the case of
the J0453.6�6829, we find a high f /r ratio of OVII Hea lines and OVIII
Lyb/a ratio. The spectrum is fairly explained by taking into account a CX
emission in addition to the thermal component. Analyzing archival ATCA &
Parkes radio data, we also reveal that H I cloud is possibly interacting with
J0453.6�6829. These results support the presence of CX in J0453.6�6829, as
the origin of the obtained high f /r ratio. Although a contribution of the RS
cannot be ruled out at this time, we conclude that CX seems more likely than
RS considering the relatively symmetric morphology of this remnant.

We present a method to constrain the 3D structure of SNRs by measuring
their line-of-sight length through the effects of RS. Additionally, we apply
this methodology to one of the brightest extra-Galactic SNRs, 1E 0102�72.9
(hereafter E0102), whose 3D structure is currently a controversial. Previous
studies have proposed various structures for 1E 0102.2�7219, such as barrel-
like and cylindrical structure. These structures require strong scattering ef-
fect, which is inconsistent with our results. Therefore, we have proposed a
double-ring structure and a cylindrical structure with the expansion veloc-
ity as structures that are consistent with both our observations and previous
studies. This method can be applied to many celestial objects using the future
satellite XRISM.

The RGS spectra of N49 and J0453.6�6829 show the excess around 16 Å,
which cannot be explained by the effect of CX and RS. We attribute these dis-
crepancies to uncertainties in the atomic data related to Fe-L emission lines.
To solve these problems, it is necessary to experimentally measure atomic
data. Ground experiments, such as EBIT are indispensable for the future de-
velopment of X-ray astronomy.
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Chapter 1

Introduction

A supernova (SN) is an explosion at the end of a star's life. Heavy ele-
ments synthesized in the interior of a star are released into interstellar space
by an SN explosion. Ejected material from an SN collides with surround-
ing gases and forms a high-temperature plasma called supernova remnant
(SNR). Since SNR plasmas are often optically thin in the X-ray band, X-ray
imaging spectroscopy enables us to directly estimate the abundances and
spatial distribution of heavy elements. This information provide us with
many insights into the evolution process and explosion mechanism of the
progenitors (e.g., Sato et al., 2021).

Recent studies pointed out that the formation process and X-ray emission
process of SNRs are more complex than those expected in the conventional
picture assuming spherically symmetric explosions in uniform environments
(e.g., Okon et al., 2020; Yamaguchi et al., 2018; Uchida et al., 2019). Such di-
versity in the physics of SNRs has been revealed by improvements in the
performance of X-ray detectors. Figure 1.1 show the improvement history
of energy resolution of X-ray instruments and important �ndings, which re-
sulted from the spectral study. CCD detectors, which are widely used in
X-ray astronomy, can separate the major K-shell emission lines from heavy
elements with different ionization states. On the other hand, X-ray grating
spectrometers and future available X-ray calorimeters have an energy res-
olution one order of magnitude better than CCDs. Such energy resolution
enables us to measure the kinetic velocities of gases and the abundances of
rare elements, as well as to investigate physical processes such as charge ex-
change (CX) due to collisions between ions and neutral atoms, and scattering
of line photons by ions (resonance scattering: RS).

In this thesis, we perform diagnostics for physical processes such as CX
and RS in SNRs with the grating spectrometer. Although these processes are
predicted to occur in SNRs by previous calculations (e.g., Lallement, 2004;
Kaastra and Mewe, 1995), established observational evidence is still limited.
This is because it is dif�cult to apply the grating spectrometer to diffuse ob-
jects such as SNRs. Since the effect of these processes apparently reduce or
enhance intensities of some lines, ignoring their contribution can sometimes
lead to, for example, biases in elemental abundance measurements. On the
other hand, quantifying their contribution will allow us to obtain several im-
portant information such as microturbulence velocities, absolute abundances
and 3D structure of SNRs.
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FIGURE 1.1: History of energy resolution of X-ray spectrome-
ters in X-ray astronomy (Ezoe et al., 2021). The energy resolu-

tion is FWHM in energy for 6 keV X-rays.

In Chapter 2, we describe the reviews of SN and SNR, respectively. The
basic characteristics of the instruments aboard XMM-Newton which we used
in this study are summarized in Chapter 4. Chapter 5 provide the results of
the high resolution X-ray spectroscopy of SNRs located in Large Magellanic
Cloud (LMC): N49 and J0453� 6829. In Chapter 6, we introduce a method to
constrain the 3D structure of SNR plasmas using the effect of RS. Combin-
ing all the works, we develop the discussions in Chapter 7, and we �nally
describe the summary and conclusion of this thesis in Chapter 8.
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Chapter 2

Supernova and Supernova
Remnant

A supernova (SN) is an explosion at the end of a star's life. It is one of the
most dramatic explosion phenomena in the universe, with a brightness com-
parable to that of a single galaxy and a released kinetic energy of � 1051 erg.
SN explosions are the �nal stage of stellar evolution and the origin of com-
pact objects such as black holes and neutron stars. In addition, heavy ele-
ments synthesized in the interior of stars during their evolution and explo-
sions are released into interstellar space by SN explosions. This diversity
makes SNs one of the most interesting phenomena in the universe. In this
chapter, we explain the evolutionary process leading up to the explosion of
a star, the classi�cation and explosion mechanism of SN, and the supernova
remnant (SNR).

2.1 Stellar Evolution of the Progenitor

2.1.1 Stellar Evolution

Stars are classi�ed according to the observed temperature (spectrum type)
and luminosity. Figure 2.1 shows an HR diagram showing the types of stars.
Stars produce energy by nuclear fusion reactions in their cores, creating enough
pressure to support their self-gravity. Nuclear fusion reactions inside stars
begin with nuclear reactions of hydrogen, gradually synthesizing heavier ele-
ments. A star in the early stages of stellar evolution that is burning hydrogen
is called a main sequence star (for example, the B-type star indicated by the
red circle in Figure 2.1). The temperature and brightness of main sequence
stars depend primarily on their mass. When a star exhausts the hydrogen in
its core, hydrogen nuclear reactions begin in a shell outside the core, then the
radius of the star expands and the surface temperature drops. As the radius
expands and the surface temperature drops, the star moves to the right on
the HR diagram and becomes a giant star such as a red supergiant (RSG). A
Star with an initial mass of less than 25 M � are considered to be an SN explo-
sion in the giant star phase. Massive stars with initial mass exceeds 25 M �
move to the left again in the HR diagram due to their large amount of mass
loss. Such Massive stars considered to explode after becoming a Wolf-Rayet
star (WR star).
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FIGURE 2.1: Hertzsprung Russell diagram for massive stars
in the SMC (Millette, 2021) based on the observation of Ra-
machandran et al. (2019). The brown pentagons represent WR
stars (encircled if in a binary system), yellow symbols represent
yellow supergiant (YSG) stars, blue triangles for blue super-
giant stars (BSG), and red triangles for red supergiant (RSG).
Black tracks show standard stellar evolutionary paths, while

the blue tracks show the paths of WR stars.
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FIGURE 2.2: p–p chain reaction (taken from astronomical dic-
tionary)

2.1.2 Stellar Nucleosynthesis

The stars contract quasi-statically due to self-gravity while maintaining the
balance between the pressure gradient force and gravity. Part of the released
gravitational energy is released as photons and the rest becomes internal en-
ergy. Gradually, the interior of the star becomes hot and dense, and the nu-
clear fusion reaction of hydrogen begins.

Hydrogen Burning The phenomenon of synthesizing helium nuclei from
four hydrogen nuclei (protons) is called hydrogen burning. Hydrogen burn-
ing occurs in the core of main-sequence stars with temperatures of � 107 K.
Hydrogen burning includes the p–p chain reaction, which is dominant in
main-sequence stars of solar mass or less, and the CNO cycle, which is dom-
inant in stars that are more than 1.3 times as massive as the Sun.

In the p–p chain reaction, two protons �rst become deuterium, and the
deuterium reacts with a proton to be 3He. This reaction can be described as

p + p ! 2H + e+ + n (2.1)
2H + p ! 3He + g. (2.2)

The p–p chain reaction is classi�ed into ppI, ppII and ppIII depending on the
subsequent reactions. A summery of these reactions is shown in Figure 2.2.

In the CNO cycle, protons are successively captured by carbon, nitrogen,
and oxygen nuclei and become helium nuclei. The series of reactions shown
in the following Equations (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) is the main
reaction of the CNO cycle called the CN cycle, and CNO are used as catalysts
here.

12C + p ! 13N (2.3)
13N ! 13C + e+ + g (2.4)
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FIGURE 2.3: CNO cycle (taken from astronomical dictionary)

13C + p ! 14N + g (2.5)
14N + p ! 15O + g (2.6)

15O ! 15N + e+ + n (2.7)
15N + p ! 12C + 4He (2.8)

The reaction of Equation (2.6) has the following branching reaction.

15N + p ! 15O + g (2.9)

This reaction occurs at a rate of 10� 4. In the CNO cycle, there is also reactions
called the NO cycle that starts from this reaction. Figure 2.3 summarizes
these reactions.

Helium Burning and Fusion of Heavier elements When the central tem-
perature reaches � 108 K, helium is ignited via the triple-alpha process. In
the triple-alpha process, three helium nuclei ( a particles) fuse to be a carbon
nucleus. This process occurs through the two-step reaction shown in Equa-
tions (2.10) and (2.11) below.

4He + 4He *) 8Be (2.10)
8Be+ 4He ! 12C + g (2.11)

Since 8Be is unstable, it decays to 4He in � 10� 16 seconds. Therefore, the
reaction described as Equation (2.10) is in an equilibrium state, and 12C is
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