Diffuse X-Rays from the Galactic Center Environment

- A Zoo of Iron Line Clumps, Non-Thermal Filaments, and Hot Plasmas -

Aya Bamba, Katsuji Koyama, Hiroshi Murakami, Atsushi Senda, Shin-ichiro Takagi, and Jun Yokogawa (Kyoto Univ., Japan)

1. Introduction

In the Galactic center (GC) region, Ginga and ASCA found the large-scale thin-thermal plasma with strong lines from ionized iron (Kovama et al. 1989: 1996). On the other hand, Murakami et al. (2000; 2001a; 2001b) discovered clumps with a neutral (6.4 keV) iron line, suggesting that these clumps would be X-ray reflection nebulae (XRNe). Moreover, clumps with He-like (6.7 keV) iron line are also discovered with Chandra

and inferred to be young SNRs (e.g. Senda et al. 2001). In this paper, we report on diffuse X-ray structures around the Sgr A, the molecular cloud Sgr B2 and Sgr C, and the Radio Arc region observed with Chandra and summarize their characteristics.

2. Observations

We use the Chandra data of the Radio Arc, the GC, Sgr B2, and Sgr C (as the Galactic plane survey). The FOV of each observation is drawn in Figure 1 and the total exposure time of each observation

Table 1: Exposure time in each observation.							
Region	Radio Arc	Sgr A	Sgr B2	Sgr C region			
Fynosure [keer]	49	46	99	20			

3. 3.0 - 8.0 keV Images

Many clumps are found! (No.1 - 16)

red: No emission line blue: 6.4 keV line green: 6.7 keV line (see section 4)

4. Spectral Fittings

We fitted the spectra of all sources in Figure 2a, 2b, and 2c. spectral model = (power-law + Gaussian) x absorption

luble 2b. 0.4 kev clumps							
Target No.	Г	E _c [keV]	EW [keV]	N _H [10 ²² cm ⁻²]	Flux† [ergs cm ⁻² s ⁻¹]		
3	1.8 (-1.0 – 5.8)	6.34 (6.26 – 6.41)	0.9 (0.5 – 1.3)	33 (17 – 51)	1.2×10 ⁻¹²		
5	0.5 (-0.6 – 1.1)	6.43 (6.37 – 6.55)	1.3 (0.8 – 1.8)	4 (1 – 10)	7.2×10 ⁻¹³		
6	1.6 (-0.7 – 6.6)	6.35 (6.29 – 6.41)	1.6 (0.8 – 2.4)	12 (3 – 30)	4.6x10 ⁻¹³		
7	3.5 (2.0 – 4.5)	5.97 (5.85 – 6.42)	1.1 (0.6 – 2.4)	8 (5 – 12)	4.9x10 ⁻¹³		
10	-0.1 (-1.1 – 1.3)	6.41 (6.36 – 6.45)	0.8 (0.5 – 1.1)	10 (2 – 27)	1.1x10 ⁻¹²		
13	1.0 (0.2 – 1.7)	6.41 (6.37 – 6.45)	1.7 (0.3 – 88)	40 (20 – 63)	6.6x10 ⁻¹³		
14	0.7 (-2.0 – 4.6)	6.42 (6.38 – 6.47)	1.9 (> 0.08)	20 (12 – 43)	4.1×10 ⁻¹³		
15 (Sgr C)	2.6 (> -0.7)	6.40 (6.30 – 6.47)	31 (> 12)	5 (not determined)	1.4×10 ⁻¹³		

Table 2c. 6.7 keV clumps

		keV	[keV]	[1011cm/2]	ergs cm's'
	1.9	6.63	1.3	6	2.x10 ⁻¹²
	(0.9 - 2.2)	(6.48 - 6.83)	(0.6 - 1.9)	(3 - 8)	
1	1.9	6.83	2.6	4	1.6x10 ⁻¹³
	(0.3 - 4.3)	(6.63 - 7.01)	(0.4 - 4.6)	(2 - 12)	
2	9.4	6.62	19	44	3.5×10 ⁻¹³
	(> 5.8)	(6.58 - 6.63)	(> 6.6)	(21 - 52)	
5	2.6	6.63	2.0	7	2.0×10 ⁻¹²
	(1.1 - 4.3)	(6.05 - 6.67)	(0.3 - 3.9)	(3 - 12)	

': Errors are in 90%.

†: In 2 – 10 keV band.

• Diffuse structure (shell like?) They are young SNRs?

Thermal fittings indicate that kT are higher than ordinary SNRs.

5. Diffuse Emissions around Arches Cluster

The emission is XRN, too! The irradiating source.....inner clusters? The required source luminosity is ~ 10 times of that of clusters ($\sim 10^{34} {\rm ergs~s^{-1}}$).

The clusters were more brighter than now Flaring? and/or Bursting?

6. The XRN, Sgr C Region

We fitted the spectrum of Sgr C with XRN model. We fixed the photon index to 2.0 (Murakami et al. 2000) and the equivalent width to 2.0 keV (Inoue 1985), expected value in the case of XRNe.

- •6.4 keV line
- deep absorption
- correlation with molecular clouds (see Figure 3) offset of the emission to the GC
 - We confirmed that Sgr C is an XRN!

7. Summary

- 1. With Chandra data, we found many diffuse structures.
- 2. Their spectra are full of variety; we classified them with iron lines into 6.4 keV, 6.7 keV, and lineless clumps.
- 3. The 6.4 keV line clumps are suggested to XRNe, similar to Sgr B2. For many of them, the molecular clouds and the external X-ray sources have not been found.
- 4. The 6.7 keV clumps may be young SNRs, although the kT is higher than ordinary SNRs.
- 5. We suggest that lineless clumps may emit X-rays by synchrotron process (X-ray filaments) in rather weak magnetic field. The diffuse emission around Arches cluster has 6.4 keV line emission, indicating that it is also an XRN. The irradiating X-ray sources may be a flaring and/or bursting star in the cluster.
- 6. The Sgr C region is also an XRN, as suggested by Murakami et al. (2001a).

8. References

- Inoue, H. 1985, Space Science Reviews, 40, 317
 Koyama, K. et al. 1989, Nature, 339, 603
- Kovama, K. et al. 1996, PASJ, 48, 249
- Murakami, H. et al. 2000, ApJ, 534, 283 Murakami, H. et al. 2001a, ApJ, 550, 297
- Murakami, H. et al. 2001b, ApJ, 558, 687
 Senda, A. et al. 2001, to be published in ApJ (astro-ph/0110011)
- Tsuboi, M. et al. 1999, ApJS, 120, 1
- Yusef-Zadeh, F. et al. 2001, submitted to ApJ letter (astro-ph/0108174)