μ-PICによるcool-X性能評価

川手朋子 澤田真理

2006 Kadai Ken Q Dept. of Physics, Kyoto Univ

目次

- 1. 実験のねらい/検出器(澤田)
- 2. スペクトル解析(川手)
- 3. 2次元イメージング(川手)
- 4. 本実験(川手/澤田)
- 5. まとめ(澤田)

1. 実験のねらい/検出器

μ-PICについて

400 μ m間隔

3

検出原理

実験のねらい

* COOL-X(副島君発表)の詳細なデータを μ -PICを用いて取得するとともに、 μ -PICの扱いに慣れる。

*取得したデータを元に、シミュレーションによってCOOL-Xを用いた単色X線装置を最適化する。

装置

GEMについて

ASDについて

μ-PICからの信号を読み出すプリアンプ

時定数:80[nsec]

ASDのゲイン

 $A_{ASD} = 700[pC/pC]_9$

ゲイン測定

1次電子の電荷量

μ-PICのゲイン

GEMのゲイン

Gain Map

Anode側,Cathode側ともに32chずつ 足し合わせたアナログ読み出し

→ *μ* -PIC全面で8×8ヶ所

Anode: +500V

Drift Plane: -1600V

Gem Top: -1250V

Gem Bottom: -1000V

2. スペクトル解析

Spectroscopy

• Flash ADCを用いた解析

取得条件

 μ-PIC内のAnode,
 Cathode共に128~160ch,
 12.5mm四方で得た信号を 足し合わせる。

Anode HV +480V

Drift plane -1600V

•Gem Top -1250V

•Gem Bottom -1000V

•使用線源 55 Fe,109 Cd

55Fe, 109Cdのスペクトル

⁵⁵Fe, ¹⁰⁹Cdのスペクトル

3. 2次元イメージング

2D imaging

取得条件

•的: 自作テストチャート (Ti 厚さ50 μ m)

•使用線源:5Fe

結果

位置分解能

図の赤で囲んだ 30×3ピクセル分を 縦方向にprojectionし、 得られたヒストグラムを 誤差関数でfitting

誤差関数によるfitting

考察

μ -PICの位置分解能は最大で σ ~140 μ m

分解能低下の要因

- •1cmパッケージ中での電子の拡散 → σ~500 µ m
- ・テストチャートと線源の配置
- ・自作テストチャートの正確さ

4. 本実験(Cool-X)

設置図

Rateの変化

Rateの経時変化

Cool-Xのスペクトル

解析

幅の等しい円環で 円周方向に積分し 単位面積あたりの カウント数を計算

評価方法

最高値に対する割合を半径に対しプロット(片対数)

考察

COOL-X

COOL-Xの放射窓から 検出面までの距離Lに対し、

L = 3cm

R ~ 16mm

L = 8cm

R ~ 29mm

となった。

29mm

35

中心でのFlux~150[photons/cm²/sec]

@ L = 3cm

5. まとめ

まとめ

できたこと

 μ-PICを用いたCOOL-Xのスペクトル、レイトの 測定、ビーム形状のおおまかな決定

できなかったこと

- COOL-Xのphaseに応じたスペクトルの選り分け、 ビーム形状の違いの測定
- 測定結果を用いた、シミュレーションによる X線発生装置の最適化

おまけ

μ-PIC狂乱編

2月15日(正常)

2月20日(兆候)

3月1日(異変)

傷発見

ガス漏れ確認

修復

暗中模索、疑心暗鬼

・しかしゲインの変動は収まらず

• 他の原因を探すこと約2週間

ついに発見

HVからの

とどめ

• Drift Plane電圧が正しくかかると、 例のゲインの変動は収まった

しかしその矢先、μ-PICが放電(人災)

ゲイン測定

一次電子の電荷量Q_i=線源E/W値×素電荷

オシロスコープの波形から、
Pulse Heightと時間幅(FWHM)を測定
↓
オシロに到達したパルスの電荷量Q_f

≥ Pulse Height×時間幅(FWHM) → オシロスコープの終端抵抗(50Ω)

おまけ

スペクトル編

Spectroscopy 配線図

積分方法

線源エネルギー較正

線源による分解能

線源による分解能2

考察

- 分解能は5.9keVで26.1%22keVで19.4%
- オシロスコープによる 面積の計算に比べて gainが1.3倍ほど高いが、 それは三角形で近似したためであり、妥当な結果。

おまけ

2D imaging編

おまけ

Cool-X編

Cool-X

Heating/Cooling phase

全て合わせたスペクトル

Rateの取得

2D imagingに用いたEncoder boardから 出力されるclockを利用。

 \downarrow

2D上であるパルス数を取得するのに何 秒掛かるかで、rateを計算する。

Encoder boardの 時間分解能

= 2.62 msec

取得条件

Rateの前回からの変化により、今取得しているのは周期のどの位置なのかを特定する。

スペクトルの取得

 μ-PIC内のAnode,
 Cathode共に64~96ch,
 12.5mm四方で得た信号を 足し合わせる。

-Anode HV +500V

Drift plane -1600V

•Gem Top -1250V

-Gem Bottom -1000V

Cool-Xのスペクトル

Heating phaseとCooling phaseはrate の変化でほぼ見分けが付く。

Rateの測定直後のスペクトル取得時間内はphaseが変わらないとして、phaseに応じてスペクトルを振り分ける。

考察

COOL-X

50%に落ちる半径をRとする。 COOL-Xの放射窓から 検出面までの距離Lに対し、

L = 3cm R = 16mm

L = 8cm R = 29mm

となった。

 $x \sim 7.2 \text{mm}, \ \theta \sim 14.7^{\circ}$

