EM counterparts of GW DNS mergers and Nuclear MeV gamma-rays

Kenta Hotokezaka (Hebrew U => CCA at Flatiron Institute)

with Shinya Wanajo (上智大), Masaomi Tanaka (NAOJ), Aya Bamba (東大) Yukikatsu Terada (埼玉大), and Tsvi Piran (Hebrew U)

• Overview of EM counterparts of neutron star mergers

R-process Kilonova/Macronova

 Nuclear gamma-rays from neutron star mergers: Important & Difficult

Gravitational-Wave Astronomy

Two LIGO's detector discovered gravitational waves from binary black holes.

GW detector Netwok

LIGO detected double black hole mergers

The GW detector network is growing in the world.

Abbott + 2016

The GW network tells us the location of GW events. => Challenge to discover electromagnetic counterparts. e.g. A possible gamma-ray signal from GW150914 reported by Fermi GBM

Localization of the three LIGO's events

The best strategy to search GW counterparts

Use the telescope that can reach the largest survey volume on a given time scale and frequency.

i.e., the largest $\frac{d(\text{Survey Volume})}{dt}$

Electromagnetic counterparts of mergers

log(t [s]) -2 -1 0 1 2 3 4 5 6 7 8

EM counterpart: Isotropic Emission

log(t [s]) -2 -1 0 1 2 3 4 5 6 7 8

Dynamical Mass Ejection at Merger

Animation from KH+ 13

300 km x 300 km

2400 km x 2400 km

Baryonic outflow: ~ 0.001 - 0.01Msun with 0.1c - 0.3c. Driven by gravity and hydrodynamics. => These ejecta produce electromagnetic signals.

also Davies+94, Freiburghaus+99, Rosswog+00, Ruffert & Janka 01, Baustein + 13, Piran + 13, Rosswog 13, Kyutoku+15, Sekiguchi + 15, 16, East+16, Radice+16

Rate vs Mass/event of r-process

KH, Piran, Paul 15

Ref: Battistini&Bensby 16 for the Milky Way, Macias & Ramirez-Ruiz 16 for Extremely Metal Poor Stars, Tuner+07, Wallner +15, KH+15 for geological Pu-244, Ji+16, Roederer+16, Bemiamini, KH, Piran 16 for Dwarf galaxies Tanvir+13, Berger+13, KH+13, Yang+15, Jin+16 for macronovae, Kim+15, Wanderman & Piran 15, Ghirlanda+16 for compact binary mergers

Macronova : Radiation transfer

Tanaka & KH 2013

also Barnes & Kasen 2013

Double Neutron Star Merger at 200 Mpc

- It is red because of high opacity (Lanthanide) & rapid expansion.
- i & z-band mag ~ 21 24th mag within 5 days (optical).

DECam & Subaru follow up of LIGO's O1 Run

No optical counterpart detection (note that this is a binary black hole). They demonstrated the deep and wide follow-up survey works.

Long-lasting Radio Remnant of neutron star mergers

F_v [mJy]

Radio Macronovae as GW counterparts

Point: radio false positives are quite rare, e.g., a few % of optical

Galaxy targeted search in the O2 run Small FoV => Use local galaxy catalogs

For DNSs, the sensitivity increases by a factor of ~7 when using the catalogs.

Macronova/Kilonova Li & Paczynski 1998, Kulkarni 2005, Metzger+10

Radioactivity of neutron rich nuclei heats up the ejecta => Bright emission: nova < macronova < supernova

Kilonova: Thermal emission from the merger ejecta

Li and Paczynski 1998, Kulkarni 2005, Metzger+10, Tanvir+13, Berger+13

Important: The initial internal energy is practically negligible for macronova emission. Therefore, the light curve is determined by energy injection at late times.

R-process in Neutron Star Merger Ejecta

Lattimer & Schramm 74, Metzger+10, Goriely+11, Korobkin+12, Wanajo+14, Lippuner & Roberts 15, Wu+16

✓ Almost all material is synthesized in heavy r-process elements.
✓ Nuclei are initially far from the stability line.

- => 10^41 erg/s at 1 day
- => Kilonova

Light curve of kilonova/macronova

The atomic opacity of r-process elements is quite high. ~100 times the one of type Ia supernovae.

Fainter, Longer, Redder

Three macronova candidates after nearby short GRBs

- Peak luminosity ~ 10^41 erg/s.
- The I-band light curves of 050709 and 060614 are quite similar.

Kilonova/Macronova candidates

Jin, Hotokezaka et al 2016

	Redshift	T90 (s)	Eiso (10^51 erg)	Macronova (erg/s)	Note
GRB 050709	0.16	0.1 (+130)	0.07	10^41 (I-band)	very small host
GRB 060614	0.125	5 (+97)	2.5	10^41 (I-band)	not really a short burst
GRB 130603B	0.356	0.18	2.1	10^41 (H-band)	the first candidate
GRB 150101B no detection	0.134	0.012	0.013	<10^42 (H-band)	Early type host

We think a good fraction of sGRBs accompanying a macronova.

Nuclear Gamma-rays from neutron star mergers

GOLU

202.2

Very difficult to detect.

But

The direct detection will be the ultimate proof of the origin of r-process elements.

Gamma-rays from macronovae

Specific heating rate of r-process material

 $\dot{Q} \sim 10^{10} \ erg/s/g\left(\frac{t}{1 \text{ day}}\right)$

Nuclear gamma-rays are produced immediately after beta-decay.

Gamma-ray luminosity ~ electron & neutrino luminosity

 $\dot{Q} \sim 10^{10} \ erg/s/g \left(\frac{t}{1 \, \mathrm{day}}\right)^{-1.2}$

Specific heating rate of process material

100

1000

10000

,

Nuclear Gamma-rays are produced immediately after beta-decay.

Gamma-ray luminosity ~ electron & neutrino luminosity

10

10-9

 au_{γ}

of macr

$$(t) \approx \frac{\kappa_{\gamma}}{\kappa_{o}} \frac{c}{v} \left(\frac{t_{\text{diff},o}}{t}\right)^{2},$$
$$\approx 0.02 \left(\frac{t_{\text{diff},o}}{t}\right)^{2} \left(\frac{\kappa_{\gamma}}{0.05 \text{ cm}^{2}/\text{g}}\right)$$
$$\times \left(\frac{\kappa_{o}}{10 \text{ cm}^{2}/\text{g}}\right)^{-1} \left(\frac{v}{0.3c}\right)^{-1}$$

Thin to gamma-rays on the macronova timescale.

ED Energy partition to different products

0

 \bigcap

Energy partition to different products

NSM-fission: $90 \le A \le 280$

Gamma-ray spectra

Gamma-ray light curves at 3Mpc

Summary

Neutron star mergers are promising sources that are associated with electromagnetic signals. => Identifying the host galaxies and studying high energy astrophysics.

One of the expected counterparts is Kilonova/Macronova driven by the radioactivity of r-process elements. => The peak luminosity: 10^40 - 10^41 erg/s at 1 week in the red - infrared.

We have already seen three kilonova/macronova candidates after the nearby GRB 130603B, 060614, 050709. => Kilonovae/Macronovae may be ubiquitous phenomena.

The direct detection of MeV gamma-rays from neutron star mergers will be the ultimate proof of the origin of r-process elements.

The spectrum is flat from 100 keV - a few MeV. MeV is the best to see it.

They are detectable at 3 - 10 Mpc by CAST.