Development of a Compton gamma-ray camera with LaBr₃(Ce) pixellated arrays for medical imaging

Shunsuke KUROSAWA

Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan

⁴ISAS / JAXA, Kanagawa, Japan

⁵World Engineering System, Kyoto, Japan

SCINT2009 June 8, 2009 @ Lotte Hotel Jeju, Jeju, Korea
Contents

• Introduction
 – Electron Tracking Compton Camera (ETCC) for Medical imaging

• LaBr$_3$(Ce) array
 – Assembly of LaBr$_3$(Ce)
 – Measurement of a LaBr$_3$(Ce) array

• ETCC with LaBr$_3$(Ce) arrays
 – Setup
 – Imaging with the camera

• Summary
Medical imaging (functional image)

PET: $E = 511$ keV

SPECT: $E < 360$ keV

New radioactive tracer with new radioisotopes

It is possible that we obtain various images: anti-body, enzyme, protein reaction

Multi-radioisotope Imaging

With wide energy range

Simultaneous observation of some metabolisms and interactions

<table>
<thead>
<tr>
<th></th>
<th>139Ce</th>
<th>133Ba</th>
<th>131I</th>
<th>198Au</th>
<th>22Na</th>
<th>18F</th>
<th>54Mn</th>
<th>65Zn</th>
<th>60Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [keV]</td>
<td>167</td>
<td>354</td>
<td>364</td>
<td>412</td>
<td>511</td>
<td>1275</td>
<td>511</td>
<td>835</td>
<td>1116</td>
</tr>
</tbody>
</table>

PET

SPECT
Electron Tracking Compton Camera

- Reconstruct incident gamma ray event by event
- Gaseous TPC (time projection chamber): containing μ-PIC (MPGD), GEM (Inutsuka et al., Sauli)
- Scintillation camera: Pixel array Scintillator
- Energy and 3-D track of Compton-recoil electron

10cm Scintillator

TPC μ-PIC

Large FOV (~3str)
Kinematical background rejection by comparison of two α angles

Event 1 \Rightarrow 100

Energy dynamic range: from 0.1 to ~1 MeV

Reconstruct incident gamma ray event by event
To obtain a higher angular resolution

Angular resolution of the Compton camera depends on the energy resolution of scintillator

\[
\cos \phi = 1 - \frac{m_e c^2 K}{(E+K) E}
\]

Eng. Res. (FWHM) of LaBr\(_3\)(Ce) : ~ 3 \% @ 662 keV

Loef et al. (2001)
Assembly of LaBr$_3$(Ce) array

Using our technique, we cut 5.8×5.8×15.0 mm3 pixels out of two φ38×38 mm3 LaBr$_3$ crystals and assembled an 8×8 array.

Saint-Gobain BrilLanCe380
Size: φ38×38 mm3
Eng. Res.: ~3 % (FWHM, @ 662 keV, using HPK R6231)

1/2 attenuation length @662 keV
LaBr$_3$ (Ce): 18 mm

Effective area: 49 × 49 mm2
(=PMT photocathode)

Glass window: Quartz (t 2.3 mm)
Hermetic package: Aluminum (t 0.5 mm)
4ch readout with multi-anode PMT

- Flood field irradiation image using a Charge-division method

Multi-anode PMT
HPK H8500

LaBr₃(Ce) array

54mm

4ch readout with a resister chain

- 64 anodes of PMT
- 4 ch output
- pre.AMP R=100Ω
Energy resolution (FWHM)
Using Multi-anode
PMT H8500

FWHM Eng. Res. @ 662 keV
Ave. ± σ : 5.8 ± 0.9%

FWHM(%)=
(5.7±0.4) ×(E/662keV)^-0.53±0.01
9 arrays: Energy Resolutions (FWHM) @ 662keV

Eng. Res. (FWHM) @ 662 keV
Ave. ± σ:
6.0 ± 1.0%
(15mm-thickness)
5.6 ± 0.8%
(20mm-thickness)
5.8±0.9%
(Total, 576 pixels)
Setup of ETCC

LaBr₃(Ce) arrays

Gaseous TPC

LaBr₃ TPC source

50mm 200mm

γ

e-

Source

Electron 3-D track

Reconstruction of a Compton event

Angular resolution (FWHM) [degree]

4.2 ± 0.3° @662 keV

FOV: 400cm² @10cm from TPC

356keV, FWHM

300 400 500 600 700 800 900 1000

Energy [keV]
Mouse imaging

131I-MIBG (365keV) Imaging (ETCC & CT)

65Zn$^{2+}$ (1116keV) Imaging (ETCC & photo)
The clinical drugs 18F-FDG (PET) and 131I-MIBG (SPECT) can image the MRMT1 (mammary tumor) and PC12 (Pheochromocytoma)
Summary

• we assembled an 8 × 8 LaBr₃(Ce) pixel array.
 – Pixel size: 5.8 × 5.8 × 15 mm³
 – 5.8 × 5.8 × 20 mm³
 – Pixel pitch: 6.1mm (the same as that of the multi-anode PMT H8500)

• Dynamic energy range: 80 – about 1000 keV.

• Energy resolutions of the array with the MAPMT (FWHM, @662keV).
 – 5.8 ± 0.9% (average of 9 arrays)

• Angular resolution of ETCC (FWHM, @662keV).
 – 4.2 ± 0.3 deg.

• We observed mouse imaging:
 – High energy isotope: ⁶⁵Zn²⁺ (1116keV)
 – ¹³¹I-MIBG (365keV) & ¹⁸F-FDG (511keV) Simultaneously
감사합니다