Development of an electron-tracking Compton camera based on a gaseous TPC and a scintillation camera for a balloon-borne experiment

Kazuki Ueno, Toru Tanimori, Hitotoshi Kubo, Kon taro Miuchi, Shigeto Kabuki, Atsushi Takada*, Hironobu Nishimura, Kaori Hattori, Shunsuke Kurosawa, Chihiro Ida, and Satoru Iwaki
Cosmic-ray group, Kyoto University, *ISAS/JAXA

Abstract
We have developed an Electron-Tracking Compton Camera (ETCC) based on a gaseous micro Time Projection Chamber (μ-TPC) which measures the direction and the energy of the Compton recoil electron and a GSO(Ce) scintillation camera which surrounds the μ-TPC and measures the Compton scattered gamma ray. Measuring the direction of the recoil electron reduces the Compton cone to a point, and thus reconstructs the incident direction completely for a single photon and realizes the strong background area for the next balloon experiment. Using the ETCC with a detection volume of about 10cm × 10cm × 15cm, we had a balloon-borne experiment in 2006 for the purpose of the observation of diffuse cosmic and astrophysical gamma rays. The experiment was successful. On the basis of the results, we are developing a large size ETCC in order to improve the detection area and report the fundamental performances of the large size ETCC.

1. Observation in MeV gamma-ray Astronomy

- **Universe in MeV gamma ray**
 - Nucleosynthesis
 - SNR : Radio-isotopes : 26Ni (0.158/0.812), 56Co (0.847/1.238), 44Ti (0.089/0.781/1.157)
 - Galactic plane : 56Ni (1.8), 56Fe (1.173/1.333)
 - Acceleration
 - Jet (AGN), GRB
 - Synchronous radiation
 - Inverse Compton scattering
 - Strong Gravitational Potential
 - Black Hole : accretion disk, Black Hole

- **Event selection with ℓ±**
 - The angle \(\hat{\ell} \) is defined by the direction of 1 photon, the sensitivity was restricted by background.

- **Past observations**
 - **COMPTEL (CGRO)**
 - Classical Compton Imaging
 - Detected ~30 steady sources
 - **BIS, SPI (INTEGRAL)**
 - Coded Aperture Imaging in MeV gamma-ray region, sensitivity is worse than that of COMPTEL.

2. Electron-Tracking Compton Camera

- **Electron Tracking Compton Camera (ETCC)**
 - The camera consists of a gaseous time projection chamber (TPC), which detects the 3D-track and the energy of the Compton scattered gamma-ray. By using these four pieces of information, we can completely reconstruct the Compton scattering event by event, and obtain a fully ray-traced gamma-ray image.
 - Obtained flux vs/ and preceding measurement (error bar is statistical data).

3. Gaseous TPC and scintillator

- **Gaseous TPC (μ-TPC)**
 - 2D-readout (μPIC 400μm pitch)
 - Drift time (100MHz)
 - Volume : 10cm × 10cm × 15cm (prototype)
 - Position resolution : 400μm
 - Stable gas gain : ~30000 γ/μPIC @3000 γ/MU ~1MeV

- **Scintillation camera**
 - Schematic view of μ-TPC
 - Signals from anode and cathode electrode strips are pre-amplified, shaped, and digitized. All digital signals are individually fed to FPGAs, and the two dimensional position of electrodes is simultaneously calculated with a 100MHz clock.

4. SMILE project

- **SMILE**
 - Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment
 - For the sub MeV to MeV gamma-ray observation in astronomy, a detector must be launched in the space. Then, we have planned the balloon experiments, SMILE. At the first step, using the (10cm)³ ETCC, we confirmed the gamma-ray detection by the observation of diffusive cosmic and atmospheric gamma rays. At the second step, we are developing the (30cm)³ ETCC in order to enlarge the effective area for the observation of a bright source. In the future, we will construct the larger ETCC and have all sky survey with some balloons or a satellite.

5. (30cm)³ ETCC

- **3D-track and energy**
 - Example of 3D-tracks of the electron and the photon in the μ-TPC.
 - Volume : 30cm × 30cm × 30cm
 - Gas : Ar 90% + C2H6 10% 1atm
 - Energy resolution : 46% (FWHM) @631keV
 - Position resolution : 400μm
 - Stable gas gain : ~30000 γ/μPIC @3000 γ/MU ~1MeV

6. Future work

- **Tuning**
 - improve the ARM and the energy resolution to those of (10cm)³ ETCC.
 - Test : widen the dynamic range of 100keV to a few MeV, and investigate the detection efficiency and FOV.
 - For the next balloon : start the design of next flight model of the ETCC.
 - Furthermore : enlarge the size of the ETCC to (60cm)³ for a super pressure balloon or a satellite experiment.

Roadmap of the SMILE

Test : widen the dynamic range of 100keV to a few MeV, and investigate the detection efficiency and FOV.

- **Operation test of ETCC @ 35km**
 - Observation of Crab or Cyg X-1

- **Measurement of Diffuse cosmic and atmospheric gamma rays**
 - expectation : 0.1~1MeV ~200photons @ 35km, 3hours

- **ETCC**
 - Super pressure balloon ~10days
 - All sky survey (50cm)² ETCC
 - ORBITING balloon ~30days or satellite

E-mail address : kazuki@cr.esphys.kyoto-u.ac.jp (Kazuki Ueno)