Performance of the TPC with Micro Pixel Chamber readout: micro-TPC

Kentaro Miuchi
Kyoto University

1. Introduction
2. PIC Detector
3. Micro-TPC, performance
4. -ray Imaging
5. Conclusions
1. Introduction

TPC for sub-mm fine tracking

→ micro-TPC

OUR GOAL: micro-TPC as an

"electric cloud chamber"
2. PIC Detector

- Micro Pixel Chamber
 - 256 anode + 256 cathode strips
- Fine position resolution
- High gain
- Discharge damage: small

- Large area with cheap cost

TPC readout
-PIC Detector: the performance

- Stable operation: >100 hrs
- Energy resolution: FWHM 30% @ 5.9 keV

Graphs showing:
- Gas gain (Ar:C₂H₆ 8:2) vs. anode voltage (V) with gain at 1.5 × 10⁴ at anode voltage of 650 V.
- Gain vs. time (hour) with stable operation indicated for >100 hrs.
-PIC Detector: X-ray imaging

- Test chart image
 (Xe:C₂H₆ 7:3)

- Spatial resolution
 - Knife edge test
 - 400 mm resolution

- Other images
Readout Electronics

- **Preamplifier**
 - ATLAS amplifier shaper
discriminator (ASD) chip (64ch/card)

- **Position encoding module**
 - 5 FPGAs
 - 40MHz clock

- **X-ray test**
 - High intensity
 - 7.7 Mcps

- **DAQ rate [MHz]**

- **X-ray intensity [mA]**

- **Graph**

- **Dimensions**
 - 16cm
 - 40cm
 - 30cm
3. Micro-TPC, the Performance

- Field cage
 - 8 cm drift length
 - 0.4 kV/cm electric field
 - +10 μ 10 cm2 - PIC

→ micro-TPC

- Drift velocity 4.7 cm/μ s
- No gain decrease for long drift length

Kentaro Miuchi
3-D electron tracks

- Set up
- ^{90}Sr (2.2MeV γ)
- Trigger scintillator
- Several tracks (projections)

Typical electron track (gain ~7000)
4. γ-ray imaging with micro-TPC

- Idea
 - micro-TPC: electron energy & track
 - scintillator: scattered γ energy & position
 - reconstruct the gamma-rays (NOT A EVENT CIRCLE)

- Prototype
 - microTPC
 - 10 mm × 10 mm × 8.0 cm³
 - NaI
 - 4 × 4” × 1” + 25 PMTs

- 57Co (122keV γ)
-ray imaging with micro-TPC

Well-reconstructed event
(several events, for now...)

- 30 hours
- gain >5000

Concept --- OK.

assumption: $E_e = E_{\text{source}} - E_{\text{Nal}}$

FADC data(E_e) actual -ray imaging
5. Conclusions

- PIC improvements
 gain: $>10^4$
 stable operation with gain >5000

- Readout electronics
 DAQ rate: 7.7 Mcps

- Micro-TPC
 3D electron tracks

- Gamma-ray imaging
 gamma-rays: reconstructed