Development of Kyoto's X-ray Astronomical SOI pixel sensor

<u>T.G.Tsuru</u> (tsuru@cr.scphys.kyoto-u.ac.jp)

S.G. Ryu, S.Nakashima, Matsumura, T.Tanaka (Kyoto), A.Takeda, Y.Arai (KEK), + SOIPIX group

T. Imamura, A. Iwata, T. Ohmoto, T. Maeda (A-R-Tec) for Chip Design

M. Bautz, G.Y.Prigozhin, S.E.Kissel, B.LaMarr, R.F.Foster (MIT)

for experiment of XRPIX1b-CZ-FI/BI

H. Nakajima, H. Tsunemi (Osaka) J.P. Doty (Noqsi) for design of ADC

Publication

Ryu et al.	IEEE NSS 2010, Conf. Record	XRPIXI-CZ -FI
Ryu et al.	IEEE TNS 58, 2528 (2011)	XRPIXI-CZ-FI
Tsuru et al.	IEEE NSS 2011	Review
Ryu et al.	IEEE NSS 2011, Conf. Record	Event-Driven Readout system
Nakashima et al.	IEEE NSS 2011, Conf. Record	XRPIX-ADCI
Nakashima et al.	Physics Procedia 37, 1373 (2012)	XRPIXI-FZ-FI
Ryu et al.	IEEE TNS 60, 465 (2013)	XRPIXIb-CZ-FI, Inter-pixel cross-talk
Takeda et al.	IEEE TNS 60, 586 (2013)	Event-Driven Readout with XRPIX1b-CZ-FI
Tsuru et al.	SPIE Astro2012	Review
Nakashima et al.	NIM A, Accepted (2013)	XRPIX2

20130506_Krakow_XRPIX_v5.key

<u>Talk Plan</u>

- X-ray Astronomy
- "XRPIX"
 Kyoto's X-ray Astronomical SOI pixel sensor
- Depletion Layer and Dark current
 - FZ of 2010 and 2012
- Spectral Performance
- Back Illumination
- Coming Soon

Why X-ray Astronomy ?

The Andromeda Galaxy

Cluster of Galaxies

- Stars likes the sun in the optical.
- Hot plasma = several x sum of galaxies.
- Blackholes and neutron stars in X-ray. Most of normal (baryonic) matter in the universe is visible ONLY in X-ray.

4

"The" standard Imaging Spectrometer

ASTRO-H (2015)

XMM-Newton (2000)

Suzaku (2005)

Chandra (1999)

The standard Imaging Spectrometer of X-ray CCD

Suzaku「すざく」 XIS

- Non X-ray background above I0keV is too high to study faint sources.
- The time resolution is too poor (~sec) to make fast timing obervation of time variable sources.

- Fano limited spectroscopy with the readout noise ~3e- (rms).
- Wide and fine imaging with the sensor size of ~20-30mm pixel size of ~30µm[¬]

- Measure the depletion thickness by observing the ratio between the counting rates of two energies X-rays having different attenuation lengths.
- CZ: Depletion thickness of 150µm at VBB=100V.
- FZ: Full depletion of $250\mu m$ is achieved at VBB=30V.
- Nakashima et al. 2012, Physics Procedia 37, 1373

<u>XRPIXIb-FZ(2012)-FI (7kΩcm) : Depletion Depth</u>

- Counting Rate of 22keV X-ray (Cd-109) as a function of VBB. (Attenuation Length = $1200\mu m$ > Physical Thickness = $500\mu m$.)
- The data follow the expected slope of depletion \propto VBB^1/2.
- Full Depletion is reached at VBB=200V.

9

<u>XRPIXIb-FZ(2012)-FI (7k Ω cm) : Depletion Depth</u>

10

- 500 μ m @VBB=200V $\rightarrow \rho$ =4k Ω cm < average (7k Ω cm)
- ρ is different from position to position on a wafer.
- Check which wafer used in this device.

121001_MX1542_Lapis.pdf

XRPIX1/1b-FZ(2010/12)-FI (7kΩcm) : Dark (Leak) Current

- XRPIX1-FZ(2010)
 - Wafer Thickness 260µm
- Consists of two components.
- (I) Depend on T and VBB. generation in depletion layer.
- (2) Almost Constant.

10e/msec = 1.6fA

- \Rightarrow Next Slide
- XRPIX1b-FZ(2012)
 - Dark is 1/10 of FZ(2010) (at the same VBB)

From 20110516_OKImeeting_SOI_Dark_v5

Leak Current from Protection Diode (Arai-sensei)

- Simulation shows leak current from PMOS used as a protection diode at the sensor node is 2fA = 12.5e/msec.
- Possibly explains the constant component.
- Gate length of the PMOS = $0.2\mu m \rightarrow 1\mu m$.

 \Rightarrow Reduce leak current 2fA \rightarrow 0.02fA.

XRPIX2-CZ-FI (Small Pixel) : Spectrum

	Observed	Readout Noise	Fano Noise	Pixel-Pixel Gain Dispersion 1%	Sum
Cu Kα	656 eV	548 eV (FWHM) 64 e-(rms)	139 eV	255 eV	620 eV
Μο Κα	800 eV		205 eV	553 eV	805 eV

Nakashima et al., 2012, NIM A submitted

Coming Soon I / Pre Amp in Each Pixel

14

XRPIX3

- A charge sensitive amp in every pixel in order to increase the gain.
- This is basically the same amp used in PIXOR.
- Gain ~100 μ V/e, higher by a factor of ~15.
- Readout noise = 64e (rms) \rightarrow ~4e (rms).

XRPIXIb-CZ : Single Pixel Readout

15

- In order to study the soft X-ray performance.
- Observe the waveform of analogue output from a single pixel by fixing the readout address without clocking (Single Pixel Readout like a SSD).
- Detect an X-ray as a "step" and measure the pulse height. \rightarrow X-ray spectrum.
- No reset during the measurement \rightarrow Free from the reset noise
- Reduce noises other than the reset noise by introducing LPF. high_v(100 samples average) - low_v(100 samples average) \rightarrow LPF with τ =100µs

XRPIXIb-CZ-FI/BI (100µm): Spectra in Single Pixel Readout (2011.11.22)

Results on FI : Ryu et al., IEEE TNS 60, 465 (2013)

Coming Soon 2 / "Pizza Process"

- Pizza Proc. is the back side process developed by LBNL.
- CZ-BI with Backthinned to 70µm.
- A thin phosphor layer is implanted.
- Dead Layer : $0.6\pm0.2\mu m$

Pizza Process to FZ devices of XRPIX

- The Pizza proc. is now being made at LBNL.
- Evaluation of low energy X-ray spectral performance.

Summary

- We have been developing monolithic SOI sensor 'XRPIX' for future X-ray Astronomical Satellites.
- It contains the function of trigger signal output for the anti-coincidence, which realizes very low non-X-ray BGD.
- \bullet We successfully developed the test devices with the depletion thickness of ${\sim}250\mu m.$
- Under going
 - Improvement of the readout noise.
 - Reduction of dark current.
 - Test with new back side process (Pizza Proc.).

