Origin of the 6.4 keV line of the Galactic Ridge X-ray Emission (GRXE)

Takeshi Go Tsuru (Kyoto University)

M.Nobukawa, S.G.Ryu, S.Nakashima, K.Koyama (Kyoto Univ.), H.Uchiyama (Univ. of Tokyo)

6.4 keV line emission from Ridge

EW map of the 6.4 keV line near GC

No region with such high EW has been discovered except the GC.

Suzaku found that 6.4 keV line emission with nearly equal EW uniformly exist.

Ridge

extend toward the Galactic ridge.

Key Quesstion.

What is the origin of this 6.4 keV line emission in the Galactic ridge?

Asymmetric Distribution of 6.4keV line

6.4 keV line flux

[6.4 keV]/[6.7 keV]

Asymmetric Distribution of 6.4keV line

Suzaku: 6.4 / 6.7keV flux ratio

Suzaku flux ratio between the two lines also shows asymmetric distribution.

ASCA: Fe line center

Fe center energies distribute asymmetrically.

These results suggest the source of the 6.4 keV emission line distribute asymmetrically.

6.4 keV flux - 6.7 keV flux

• GC

- 6.4 keV line emission has diffuse origin.
- 6.4 and 6.7 keV lines have different origins
- Their fluxes have a scattered correlation.
- Ridge
 - The correlation is on the natural extension from the GC.
 - The 6.4 keV line fluxes also scatter.
 - The expected KP data seem to be on the line of XRNe.

Single Origin? or + Extra Source?

- In the GC, the EWs are different from point to point.
- This is because Fe emission lines are mixture of multiple origins.

Objective I

See if the plots of EW6.4 and EW6.7 concentrate in a single point or not.

Examine if the spatial distribution of the 6.4 keV line emission is symmetric or asymmetric with respect to the GC.

Case A: Single Origin (point source?)

Case B: + Extra Source (diffuse?)

Start with Case B...

6.4 keV line emission correlates with MCs

Strong 6.4 keV line emission from Clump 2

12CO (Oka+98)

Objective 2

Search of correlation with MCs.

I = 3.5° exhibits especially strong 6.4 keV line

Objective 3

Determination of the ionizing particle.

Candidates for the ionizing particles

- 6.4 keV flux ~Ie-7 ph/cm2/sec/arcmin2 is expected in the KP observing region
- XRN (X-ray Reflection Nebula)
 - Already seen in the GC.
 - Sgr A* Lx(Sgr A*) $\sim 10^4$ l ergs/s
- LECRp (Low Energy Cosmic Ray Proton)
 - NH ~ Ie+24cm-2 (observed at Clump 2)
 - Up > 75eV/cm3 \leftarrow equipartition with B > 50 μ G at R<400pc (Crocker+11) \Rightarrow ~0.5e-7 ph/cm2/sec/arcmin2
- LECRe (Low Energy Cosmic Ray Electron)
 - cf. Valinia+00
 - Ue~I eV/cm3 x NH \sim Ie+23 cm-2

 \Rightarrow ~ Ie-7 ph/cm2/sec/arcmin2

All the three processes are possible.

EW(6.4) of the 6.4 keV component [GC]

Apply this method to the Ridge data.

EW(6.4) of the 6.4 keV component [Ridge]

- We are unable to fit the line only with existing data.
- Adding the KP data allows us to obtain the correlation line.
- Obtain EW(6.4) of the 6.4 keV- component.
- Referring to the value, we determine the ionizing particle.

Difference between XRN, LECRe and LECRp

XRN vs LECR

XRN: large EW & deep absorption

LECR: shallow absorption

Spectral Index
LECRe ~ 300 - 600 eV
LECRp ~ 500 - 3000 eV

If XRN

Reveal the Activity of Sgr A* (SMBH) in 2000 years.

LECRe vs LECRp

Line width

conclusive evidence

Cosmic Ray spectrum

Total amaount of energy of CR, Spectrum, Spacial distribution

Single Origin = Point Source Origin of 6.4 keV line (apart from 6.7 keV line)

6.7keV is from Active Binaries

6.4keV is from CVs

Continuum of ABs reduces EW of 6.4 keV line from CVs

16 CVs in Yuasa's D-Th 6.4keV ~110eV 6.7keV ~120eV

(given by Yuasa-san)

Point Source Origin of 6.4 keV line (apart from 6.7 keV line)

Objective 4
Measurement of the Fe abundance gradient toward the GC (along I) and Planes (along b).

Simulation: Spectrum and Correlation

- CXB and NXB are already taken into account in this simulation.
- Δ EW6.4 = ± 39 eV (90%) Δ EW6.7 = ± 44 eV

- A simulation of the correlation.
 (Scatter the data by hand)
- Can determine EW(6.4) with enough accuracy to distinguish the ionizing particles.

"True" Legacy: Serendipitous Discoveries

Published or Accepted 30

Line Diagnostics of GCDX
Spectrum of Sgr A East

Hard X-Ray Emission the Arches Cluster

Diffuse Iron line of the Sgr B Region

Peculiar Hot Star in the GC

A Time Variable X-Ray Echo of Sgr B2

Diffuse Hard X-ray from the GC

New XRN and SNR in the Sgr BI Region

X-Ray Flare of A-type Star HD 161084

SNR Candidate G359.79-0.26

New X-ray views of the Galactic Center

X-Ray Observations of the GC

Variable Neutral Iron Line in Sgr B2

Spatial Distribution of the GCDX

Suzaku Observations of Sgr D HII region

SAX 11748.2-2808

XRN in the Sgr C region

Dips/Absorption Lines of AXI1745.6-2901

Thermal plasma near the Sgr C region

Iron lines from Galactic Ridge and GC

Superbubble

Face-on view of Sgr B2

Foot-Point of the Radio Arc

Neutral Lines of Light Elements of Sgr A region

SNR and 6.4keV lines around the Great Annihilator

RRC of G359.1-0.5

Structures of Diffuse Emission from GCDX and GRDX

K-Shell Emission of Neutral Iron Line from Sagittarius B2

Suzaku Discovery of Twin Thermal Plasma from the Tornado Nebula

Spatial and Temporal Variations of the Diffuse Iron 6.4 keV Line in the Galactic Center Region

6.4 keV structure around Archies Cluster

A Time Variability of XRN in Sgr B2

3-D position of the Molecular Cloud of Sgr C in the GC

Spatial and Temporal Variations of the Diffuse Iron 6.4 keV Line in the Galactic Center Region

Broadband Spectral Decombosiion of the Galactic Ridge Emission

Koyama, Hyodo+ Koyama, Uchiyama+

Tsuiimoto+

Koyama, Inui+

Hyodo+

Koyama, Inui+

Yuasa+

Nobukawa.Tsuru+

Miura+

Mori, Tsuru+

Koyama Koyama

Inui+

Koyama, Takikawa+

Sawada. Tsuiimoto+

Nobukawa+

Nakaiima. Tsuru+

Hyodo+

Tsuru, Nobukawa+

Yamauchi+ Mori, Tsuru+ Ryu, Tsuru+

Fukuoka+ Nobukawa.Tsuru+

Nakashima+

Ohnishi+

Uchiyama+

Digiel+

Sawada.Tsuru+

Chernysov+

Sawada+

Nobukawa+

Ryu.Tsuru+

Chernyshov,

T.Yuasa

In prep. or Submitted 5

Doctor Thesis: 6

5 New Types of objects

4 Unexpected Phenomena · New Perspectives

Thin Extended 6.4keV line emission

Many AX J*** were discovered by the ASCA Plane Survey, which eventually results in Suzaku's good achievements.

This KP will make many serendipitous discoveries,

which leads to fruitful results with Astro-H

Pointing Positions, Exposure Time and Feasibility

- 10 x 100ksec
- Stray lights from GX3+1 does not affect the Feline studies.

Pointing Positions, Exposure Time and Feasibility

