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The standard Imaging Spectrometer of 
modern X-ray astronomical satellites X-ray CCD

• Fano limited spectroscopy with 
the readout noise ~3e- (rms).

• Wide and fine imaging 
with the sensor size of ~20-30mm 
pixel size of ~30μm□
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2.4. Heat Sink and Thermo-Electric Cooler (TEC)

A three-stage thermo-electric cooler (TEC) is used to cool
the CCD to the nominal operating temperature of −90◦C. The
cold-end of the TEC is directly connected to the substrate
of the CCD, which is mechanically supported by 3 Torlon
(polyamide-imide plastic) posts attached to the heat sink. The
heat is transferred through a heat pipe to a radiator panel on the
satellite surface, and is radiated away to space. The radiator
and the heat pipe are designed to cool the base below −40◦C
under the nominal TEC operating conditions. Figure 5 is a
photograph of the inside of base with the frame-store cover
shield removed. Since the TEC is placed under the CCD, and
the heat pipe is running under the base plate, these are not seen
in figure 5.

2.5. Radiation Shield

The performance of any CCD gradually degrades due to
radiation damage in orbit. For satellites in low-Earth orbit like
Suzaku, most of the damage is due to large fluxes of charged
particles in the South Atlantic Anomaly (SAA). The radia-
tion damage increases the dark current and the charge transfer
inefficiency (CTI). The XIS sensor body provides radiation
shielding around the CCD. We found from the ASCA SIS
experiment that radiation shielding of > 10 g cm−2 equivalent
Al thickness is required. The proton flux density at 2 MeV on
the CCD chip through 10gcm−2 of shielding is estimated to be
∼ 2× 103 protonscm−2 MeV−1 d−1 in the Suzaku orbit (same
as the ASCA orbit) at solar minimum.

3. On-Board Data Processing

3.1. XIS Electronics

The XIS control and processing electronics consist of
AE/TCE (analog electronics/TEC control electronics) and DE
(digital electronics). The DE is further divided into PPU (pixel
processing unit) and MPU (main processing unit). Two sets of
AE/TCE are installed in each of two boxes, respectively, called
AE/TCE01 and AE/TCE23. Similarly, 4 PPUs are housed
in pairs, and are designated PPU01 and PPU23, respectively.
AE/TCE01 and PPU01 jointly take care of XIS 0 and XIS 1,
while AE/TCE23 and PPU23 are for XIS 2 and XIS 3. One
unit of MPU is connected to all the AE/TCEs and PPUs.

The AE/TCE provides the CCD clock signals, controls the
CCD temperature, and processes the video signals from the
CCD to create the digital data. The clock signals are generated
in the AE with a step of 1/48 pixel cycle (∼ 0.5µs) according
a micro-code program, which is uploaded from the ground.
The pixel rate is fixed at 24.4µs pixel−1. Therefore one line,
consisting of 4 under-clocked pixels, 256 active pixels, and
16 over-clocked pixels, is read out in about 6.7 ms. The CCD
output is sampled with 16-bit precision, but only 12 bits are
sent to the PPU. The 12 bits are selected to cover the full energy
scale of $ 15 keV in the normal setting of the gain. The full
energy scale of $ 60 keV can also be selected in the low gain
mode.

The AE/TCE controls the TEC (thermo-electric cooler) to
generate a temperature difference of ∼ 50◦C relative to the
base, while keeping the CCD chip at −90◦C. The AE/TCE

Fig. 5. The CCD and heat sink assembly installed in the base. The
cover shield is removed in this picture.

can also supply reverse current to the TEC, to warm up the
CCD chip in orbit. The CCD temperature may be raised a few
tens of ◦C above that of the base. In practice, the requirement to
avoid excessive mechanical stresses due to differential thermal
expansion of the copper heat sink relative to the alumina CCD
substrate imposes an upper limit on CCD temperature in this
mode. For example, with the heat sink at a typical operating
temperature of −35◦C, we have adopted a maximum allow-
able CCD temperature of about + 15◦C. The CCD temperature
upper limit is higher at higher heat sink temperatures.

The PPU extracts a charge pattern characteristic of X-rays,
called an event, after applying various corrections to the digital
data supplied by the AE/TCE. Extracted event data are sent to
the MPU. Details of the event extraction process are described
in subsection 3.3. The PPU first stores the data from its
AE/TCE in a memory called the pixel RAM. In this process,
copied and dummy pixels1 are inserted in order to avoid a
gap in the event data at segment boundaries, to ensure proper
event extraction at segment boundaries and to enable identical
processing of all segments of the data. The raw data from
AE/TCE may include a pulse height (PH) offset from the true
zero level due to dark current, small light leakage through the
OBF, and/or an electric offset. Since the offsets depend on
the CCD position and time, offset corrections are also position
and time dependent. To reduce the computing power and time
required for such corrections, the offsets are divided into two
parts, dark-level and light-leak. The dark-level is the average
output from a pixel with no irradiation of X-rays or charged
particles. The dark-level is determined for individual pixels,
and is up-dated by command only after each SAA passage in
1 The data of each CCD segment are transferred through independent lines

from the AE/TCE to the PPU, and are processed in parallel by the same
processing scheme in the PPU. For a proper event extraction at the
segment boundary, the data in the two columns of the adjacent CCD
segments must be used. Therefore hard-wired logic is installed to “copy”
the two column data in the adjacent CCD segments to the proper locations
in the PPU pixel RAM. These are called as “copied pixels”. In the case
of outer boundaries of segments A and D, such “copied pixels” can not be
prepared. Instead, two columns of zero data are prepared in the PPU pixel
RAM. These are called “dummy pixels” in the PPU pixel RAM.

Suzaku「すざく」 XIS
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and time dependent. To reduce the computing power and time
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from the AE/TCE to the PPU, and are processed in parallel by the same
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“XRPIX” = SOI pixel sensor for future X-ray astronomical satellites

10μsec

Target 
Specification

Imaging area > 25x25mm2,  pixel ~ 30-60μm□ (1” @ F=9m)
Energy Band 0.3-40keV with BI, and thick depletion (>300μm) 
Spectroscopy ΔE < 140eV @ 6keV, Fano limit (<10e-)
Timing ~ 10μsec
Function Trigger signal & pixel address output, built-in ADC
Non X-ray BGD 5e-5 c/s/keV/10x10mm2 at 20keV (1/100 of CCD)
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XRPIX1-CZ (X-Ray PIXel detector - CZochralski)
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XRPIX1: Pixel Circuit
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XRPIX1-CZ (0.7kΩcm): Depletion Depth

+ : Experimental results
–  : Expected value

CZ : 150μm @ VBB=100V

• 17 keV and 8 keV X-rays have different attenuation lengths.
• Measure the depletion thickness by observing the ratio 

between the counting rates of the two energies X-rays. 
• The data follow the expectation well.

Nakashima et al., 2011, submitted
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XRPIX1-FZ (7kΩ): Depletion Depth

Nakashima et al., 2011, submitted
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• The thickness of the depletion layer of XRPIX1-FZ reaches 
~250μm at 30V and stops its growth there. 

• The 250μm is nearly equal to the hi-ρ Si thickness (260μm). 
• Full depletion is achieved at VBB=30V.

CZ : 150μm @ VBB=100V

+ : Experimental results
–  : Expected value
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• See if the readout noise of 100e- (rms) is 
explained by the sum of circuit noises or not.

• Measure the noise of individual circuit element 
through several DC voltage input points. 

XRPIX1-CZ : Readout Noise
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•Reduce the area of BPW to 
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suppressing back gate effect 
dominates the capacitance at 
the sensor node. 

•Block 1
• Increase C_CDS from 100fF to 

400fF to reduce the reset noise 
generated at the CDS circuit. 

Purpose 
Improvement of Spectroscopic performance  
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Second dominating source 
of C of sensor node.



XRPIX1b-CZ : Single Pixel Readout
• In order to study the limit of the spectroscopic performance.
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XRPIX1b-CZ : Single Pixel Readout
• In order to study the limit of the spectroscopic performance.
• Observe the waveform of analogue output from a single pixel by fixing the 

readout address without clocking (Single Pixel Readout like a SSD). 
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XRPIX1b-CZ : Single Pixel Readout
• In order to study the limit of the spectroscopic performance.
• Observe the waveform of analogue output from a single pixel by fixing the 

readout address without clocking (Single Pixel Readout like a SSD). 
• Detect an X-ray as a “step” and measure the pulse height. → X-ray spectrum. 
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XRPIX1b-CZ : Single Pixel Readout
• In order to study the limit of the spectroscopic performance.
• Observe the waveform of analogue output from a single pixel by fixing the 

readout address without clocking (Single Pixel Readout like a SSD). 
• Detect an X-ray as a “step” and measure the pulse height. → X-ray spectrum. 
• No reset during the measurement → Free from the reset noise
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XRPIX1b-CZ : Single Pixel Readout
• In order to study the limit of the spectroscopic performance.
• Observe the waveform of analogue output from a single pixel by fixing the 

readout address without clocking (Single Pixel Readout like a SSD). 
• Detect an X-ray as a “step” and measure the pulse height. → X-ray spectrum. 
• No reset during the measurement → Free from the reset noise
• Reduce noises other than the reset noise by introducing LPF.

high_v(100 samples average) - low_v(100 samples average) → LPF with τ=100μs
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X-ray Trigger-driven Spectra
XRPIX1b-CZ : Trigger Driven Readout

Trigger-driven mode basically 
operates as designed.

TRIG_O

SCLK

CA[31-0]
RA[31-0]

31(ADDR) 0

Trigger !

Address of 
Triggered Pixel

Trigger Address 
Readout Clock

Row Column

See Ryu’s poster 
(NP3.M-90) in detail

• When X-ray is detected, the device outputs trigger signal. 
• Address of the triggered pixel is output according to clock from FPGA. 
• ADC reads out the analog signal of only the triggered pixel. 



XRPIX-ADC1

•ΔΣ type (over sampling type)
• SOI version of the ASIC 

developed for X-ray CCD 
camera onboard ASTRO-H 
(next Japanese X-ray satellite). 
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Fig. 6. Histogram of  digital output in the case of   GND input.

• It is working. 
•Making performance 

test now. 

See Nakashima’s poster (NP3.M-92) in detail.  



XRPIX2 : New Device

• Large Size,  Large Format

•60μm□ : Single pixel can cover 
the whole charge cloud to 
reduce charge sharing effect. 

•Make the capacitance at the 
readout node smaller  (Area of 
BPW = 1/4 of XRPIX1). 

•Make further increase of C_CDS 
to reduce the reset noise.

• Just submitted last week.

1.0mmXRPIX1, 1b

Designed by (KEK)

4.0mm

XRPIX2



Thank you.
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