宇宙物理入門

講義資料

第15章:宇宙線とフェルミ加速

Ver. 0

鶴剛 (tsuru@cr.scphys.kyoto-u.ac.jp)

2次のフェルミ加速

分子雲との衝突による2次のフェルミ加速

星間ガス中の密度の高い領域である星間雲は、10km/s 程度の速度でランダムに運動している。星間雲では磁場が貫かれており、周囲に比べ磁場が強い。この星間雲に (相対論的速度を持つ) 宇宙線が近付くと強い磁場により反射される。磁場によるこの反射は完全弾性衝突となるので、星間雲が静止している場合には、同じ速さで反射される。

もしも星間雲が動いており宇宙線が正面衝突すると、宇宙線の速さは星間雲の2倍の速さを新たにもらうので、加速 されることになる。しかし、宇宙線が星間雲に追突する形でぶつかると、今度は減速されることとなる。加速減速量は 同じなので、これだけでは加速されない。

しかし、正面衝突と追突ではわずかに正面衝突する確率の方が高い。よって、何度も衝突を繰り返すうちに、統計的 に加速が行なわれることになる。

実はこの素過程は、質量の違う2つの粒子の熱化の過程と同じである。つまり、(1) 同じ速度で走っていた陽子と電子の熱化、(2) 重い星(銀河) と軽い星(銀河) の間で働くダイナミカルフリクション、など。粒子加速は質量差が無限に大きく過程のタイムスケールが非常に長いため、「加速」と呼ばれるだけで、基礎的な物理は「熱化」と同じである

<u>衝撃波による1次のフェルミ加速(1)</u>

流体中を走る衝撃波での加速を考える (図 16.1)。粒子が衝撃波面の上流 (^u) と下流 (^d) を往復する。上流と下流はそれぞれ流体と一緒に移動する反射体-例えば流体に固定され流体と一緒に流れている磁場- が存在する。

流体の速度を、上流と下流をそれぞれ V_1 、 V_2 とし、それぞれの流れの系から見た粒子のエネルギーなどは、添字 u と d をつける。添字のないものは、衝撃波面に乗った系とする。

上流で反射され運動量 p、エネルギー E、速度 $v=pc^2/E$ を持つを持った粒子が衝撃波面に対して θ^+ で横切る場合、上流と下流からはそれぞれ E^u 、 E^d のエネルギーを持つ粒子として見えるとすると、

$$E^{u} = \gamma_{1}(E - V_{1}p\cos\theta^{+}) \qquad E^{d} = \gamma_{2}(E - V_{2}p\cos\theta^{+})$$

 $V_1, V_2 \ll c$ とし (V_1/c) 、 (V_2/c) の 1 次のみを取りだし近似する。 $\gamma_1, \gamma_2 \to 1$ なので、

$$E^{u} = (E - V_1 p \cos \theta^{+}) \qquad E^{d} = (E - V_2 p \cos \theta^{+})$$

となる。 E^d を持った粒子は次に下流で反射され、衝撃波に対して θ^- の方向で横切る。その際、下流では完全弾性衝突するので、下流から見るとエネルギーは E^d のままで、進行方向のみ変わったように見える。しかし、衝撃波系から見るとローレンツ変換がかかるので、エネルギーが E から変わってしまう。それを E' とする。

反射する角度はランダムであることに注意すると、一周した場合のエネルギー変化は、粒子が相対論的な場合には、

$$\frac{E'}{E} = 1 + \frac{4}{3} \frac{V_1 - V_2}{c}$$
 と書ける。

<u>衝撃波による1次のフェルミ加速(2)</u>

エネルギースペクトルは

$$N(E)$$
 \propto $E^{-(\gamma+1)},$ $\gamma=\frac{P_{\rm esc}}{\eta}=\frac{3}{(V_1/V_2)-1}=1+\frac{4}{M_1^2-1}$ と示される。強い衝撃波 $M_1\gg 1$ の場合は、 $N(E)$ \propto $E^{-(\gamma+1)}$ γ \simeq 1

実際に観測されている宇宙線のうち、銀河系内起源である knee 以下では

$$N(E) \propto E^{-(2.0\sim2.2)}$$

である。よって、衝撃波による宇宙線加速から予測されるスペクトルは、実際に観測されている宇宙線のスペクトルに 非常に近い。