SMILE 3

ガス飛跡検出器を用いたコンプトンカメラによるガンマ線観測気球実験

高田 淳史, 谷森 達, 窪 秀利, 身内 賢太朗, 土屋 兼一, 株木 重人, 岡田 葉子, 西村 広展, 服部 香里, 上野 一樹, 黒澤 俊介 (京大理), 野中 直樹, 水田 栄一 (ISAS/JAXA)

- SMILE計画
- Flight Model Detector
- Results of 1st Balloon Flight
- Summary
SMILE計画

(10cm)^3 の MeV γ 線カメラ @ 三陸 (2006秋)
- ガスTPC@増幅率3万の動作検証
 (GSOシンチレータはSuzaku/HXDで実証済)
- 宇宙背景・大気ガンマ線測定
 予想値: 0.1〜1MeV
 ~200フォトン @ 35km, 3時間

(30cm)^3 カメラ @ 日本 6時間 (2009?)
- かに星雲、白鳥座 X-1の観測

(40cm)^3 カメラ
- スーパープレッシャー気球 ~ 10日間

(50cm)^3 カメラ
- 衛星に搭載し全天サーベイ
気球搭載コンプトンカメラ

TPC
・TPC用アンプ

NIMモジュール
・シンチ用Amp
・DAC

VMEモジュール
・CPU
・各種ADC
・通信モジュール
・スケーラー

FPGAデータ処理システム

・TPC
Xe+Ar+C₂H₆ガス
(80:18:2) 1気圧
10×10×14cm³

シンチレーションカメラ
GSO:Ce PSA 6×6×13mm³
+ flat panel PMT H8500
3×3PMTs@bottom
4×(3×2)PMTs@side

Anti用Plasticシンチ
30cm×30cm×3mm
Energy resolution

- μ-TPC
 $\sim 45\% @ 22\text{keV}$
- GSO
 $\sim 11\% @ 662\text{keV}$

MeV γ-ray camera
$\sim 12\% @ 662\text{keV}$
Angular resolution

- ARM (FWHM) \~25^\circ @ 356\,\text{keV}
- SPD (FWHM) \~125^\circ @ 356\,\text{keV}

ARM : Angular Resolution Measure (散乱角決定精度)
SPD : Scatter Plane Deviation (散乱平面決定精度)
Detection Efficiency & FOV

- detection efficiency $\sim 2.5 \times 10^{-4}$ @ 356keV
- FOV ~ 3str (zenith angle $\leq 60^\circ$)
三陸大気球観測所
2006年9月1日6時11分放球

約7時間のフライト
5時26分 検出器 電源ON
6時11分 放球
8時56分 水平浮遊開始
12時59分 検出器 電源OFF
13時20分 切り離し
13時45分頃 釜石沖 着水
14時32分 回収

回収も成功！
Status of μ-TPC

- Anode Current
- Discharge rate
- Altitude

Time on 1 September, 2006 (JST)

- With balloon altitude, discharge rate increases.
 \Rightarrow Energy deposit from large He or C.

- No abnormal current was observed.
 \Rightarrow TPC is stable in the 32-35 km upper atmosphere.
Gamma-ray rate & spectrum

- γ-ray count rate
 - 100~900 keV
 - 4π direction ~1000 γ
 - Field of view (3str) ~450 γ

Energy spectrum
- 32~35 km level flight
- 3.5 h (live ~3h)
- Field of view 3str内的event
- ~200 photons
天頂角依存性

- 100〜900 keV
- 高度32〜35km, 3.5h
- 5.5〜8.5 g/cm²

Preliminary

Ling (1975)
© 7g/cm²
300keV
Growth curve

大気の厚みに対するガンマ線レートの変化

120 - 300 keV

300 - 900 keV

\[a^*z + b^*(1+p)^*\exp(-z/\tau_{\text{tot}}) \]

\(a, b: \) free parameter \(p: \) 大気散乱補正項 \(\tau_{\text{tot}}: \) mean free path

atmospheric

cosmic

[Graph showing growth curve for different energy ranges and atmospheric depth, with fitting formula and parameters explained.]
宇宙拡散・大気ガンマ線フラックス

Diffuse Cosmic/Atmosphericとも、過去の観測と矛盾しない
まとめ

 ➢ 電子飛跡検出型コンプトンカメラを開発
 ➢ 入射ガンマ線の到来方向とエネルギーを一意に決定できることを証明
 ➢ 2006年9月1日 三陸気球センターから放球
 ➢ 7時間のフライト、高度32〜35kmで4時間の水平飛行
 ➢ 上空において、検出器は安定に動作
 ➢ 電子飛跡検出型コンプトンカメラの気球高度での観測は世界初
 ➢ 全フライトで約1000個のガンマ線を観測
 ➢ 水平飛行中、視野内に200個のガンマ線を観測
 ➢ 測定結果から宇宙拡散・大気ガンマ線それぞれのフラックスを得ることに成功
 ➢ 広視野かつ高いバックグラウンド除去能力を気球高度で実証
できれば荷電粒子のトリガは抑えたい

・>1MeVのγは来ないし、止められない
・MIPがGSOで落とすenergyは>1MeV
Background of COMPTEL

A: external γ
B: internal γ
C: two γ
D: random coincidence
E: proton-induced γ

Other background
neutron
electron
大気からのγ線

COMPTELでは
上下の検出器のTOFを用いて
ある程度除去

Backgroundは落としきれず
SNは非常に悪い