

広いダイナミックレンジを持つ μPIC-2次元X線画像検出器の開発

京大理、理研播磨研^A、東工大理工^B、 Spring-8/JASRI^C、東大新領域^D 服部香里 谷森達、窪秀利、身内賢太朗、土屋賢一、 井田知宏、高田昌樹^{A,C,D}、伊藤和輝^A、 植草秀裕^B、藤井孝太郎^B、唐金祐次^B

日本応用物理学会 秋季学術講演会

新しい物質構造解析を目指して

High speed
巨大分子(たんぱく質)、創薬、材料
→ measurements in a couple of minutes

・ 広いダイナミックレンジ
→ 10⁴⁻⁵(積分型検出器: CCD, Imaging Plate)から 10⁷⁻⁸へ
→ 高精度測定を実現(異常分散等)
→ 軽い元素を含む物質の構造解析

時分割測定
反応のダイナミクス、光反応、酵素反応
連続変化を追う
(sec~10 msec スライスで、繰り返し測定で更に時間分解能向上)

現在のCCD, IPでは困難 計数型+高分解能画像

> KEK大学等連携事業 17年度開始 理研播磨研高田研究室と共同研究

回折・散乱実験のための 計数型X線2次元検出器に求められる条件

- 1. 高い2次元位置検出能力 位置分解能が100 µ m以上
- 2. 高計数率能 > 10⁷mm⁻², > × 1000 MWPC (局所的な照射で)
- 3. 大面積 15cm×15cm 以上
- 4. 不感部分が無い(つぎはぎ、接合部など)
- 5. 感度の不均一性 < 1%
- 6. 画像歪みく1%
- 7. 常温で動作、低電力 さらに、連続データ読み出し可能
- 7. 市価し到下、低電力 →折りたたみ法
- 8. メインテナンスが簡単 高いgain
- 9. 製作コストが安い →低エネルギーX線(~1 keV)をとらえられる たんぱく質に自然にある硫黄の吸収端(2.3keV)

ガス検出器µ-PICを用いた量子計測型X線画像装置 4,6,7,8,9を実現

- 1,2,5を実現すべく開発中
- 3. 現在: 検出部面積10 cm × 10 cm
 - 30 cm×30 cmも安定動作確認→今後性能評価

2008/

μ -PIC is kept in the sealed vessel

小角散乱 @SPring-8 BL45-XU SAXS station 実用化に向けた性能評価試験

2008/8/30

IUCr 2008 Osaka, Japan

溶液散乱: Dynamic Range

タンパク質の溶液散乱

Detector characteristics

	current	goal
pitch	400 µm	200 µm
Position resolution	120 µm	< 100 µm
ピクセル数	256 × 256	1500 × 1500
検出部面積	100 × 100 mm ²	300 × 300 mm ²
Gas gain	$5 \times 10^3 - 10^4$	> 10 ⁴
Dynamic Range	> 10 ⁶	107
Intensity	< 5MHz	10MHz
Range(Global)	221	
Efficiency uniformity	~several %	< 1%
distortion	No	No
Achieved by Gamma-ray camera based on a μ-PIC		

Dynamic range for incident X-ray intensity

試料:グラッシーカーボン X線:13.8 keV

20Hzから5MHzまで(5桁以上) 線形性を確認 5MHzでの安定動作 Saturationは見られなかった 低いcount rate領域でも 精度よく測定

日本応用物理学会 秋季学術講演会

計数型検出器の時間分解能

μ-PICの場合、信号のタイミングは10nsで測定可能

- 小角散乱
- →信号は検出器全面に分布
- →現在のシステムでは10Mcpsまで処理できる
- →構造をみるには10⁵ events程度必要
- →時間分解能は10⁵/10⁷=10msec程度
- 単結晶構造解析
- →信号は局在
- →小角散乱より少ないイベント数(何イベント必要かは今後評価する予定)で構造を解ける
- →時間分解能<10msec

大型µ-PIC(30cm×30cm)

