宇宙塵研究のサポート

立正大学 福岡孝昭

田澤さんとの出会い

田澤

- 1966年3月 学習院理学部物理学科卒業 (理論物理、長谷川博一研究室)
- 1966年3月 学習院大学大学院自然科学研究科 1965年4月 化学専攻入学 物理学専攻修士課程入学 (木越邦彦研究室)

²³⁴U/²³⁸U放射能比>1

- 1968年3月 同上修了(理学修士)
- 修士論文: ガラス中の²²²Rnの拡散量に 1967年4月 博士課程入学 及ぼす α trackの影響
 - 1970年3月 同満了退学

1967年3月 同上修了

1965年3月 化学科卒業(木越邦彦研究室)

(木越邦彦研究室)

火山岩のウラン系列年代測定

福岡

1970年5月 学振→助手

昭和43.2.28.

学習院大学大学院自然科学研究科

昭和42年度卒業学生の研究発表会(案内) 「I」物理学専攻

時 3月4日(月) 午前 8時 30 分 所 理学部 2号館 206号室 人および題目(譯演 20 分,討論 10 分)

(1) 伊藤 滋君 (指導 大川教授)
 加工硬化の構造と安定性について

(2)大橋 信夫君 (指導 小川助教授)
 応力によるエサキダイオードの発振周波数変化
 -digital straingauge への試みー

(3)川辺 秀一君 (指導 近藤教授, 盲講師)
 レンズの自動設計

(5) 佐々木志郎君 (指導 木下教授)
 光干渉法による高感度微小変位測定装置の試作

(6)田沢 雄二君 (指導 木越教授)
 ガラス中の²²² Rnの拡散量に及ぼす d-track の影響

(7)中島 右智君 (指導 木下殺授)
 超高真空中で蒸着した銀膜の内部応力

(8) 西堀 峯夫君 (指導 木下教授)
 極薄膜の隔光解析

昭和41.2.10.

学 習 院 大 学 大 学 院 自 然 科 学 研 究 科

昭和 40 年度卒業学生の研究発表会(案内) 「I」物理学専攻

陵

時 3月6日(日)午前9時

所 理学部 2号館 206号室

人および題目 (講演 25 分, 討論 15 分)

(1) 一宮 虎彦君 (指導 中田諤師)

アントラセンのドリフト移動度の圧力変化

(2)小賞 光太君 (指導 木下教授) MgF2 蒸着膜の光散乱

(3) 木村 久正君 (指導 小川助殺授)
 CdS 単結晶の photo-Hall 効果

(4) 野間 元作君 (指導 長谷川 教授) 高度 5200m における宇宙線空気 5+ワー中の Nuclear Active Particle

(5) 馬 宗 国 弼 君 (指導 木 下 教 授) 真 空 蒸 着 膜 (Ag, Mg F2, ZnS)の内 部 応力

(6)山崎 正之君(指導 木下發授)
 冷却 KH2P04 結晶を用いた低温型光変調器の試作

(7)四方田 重昭君(指導 近藤教授) ヴァイオリンの弦の振動

昭和42.2 27
木越教授 毆
学習院大学大学院
自然科学研究科
昭和 41 年度卒業学生の研究発表会(案内) 「I」物理学専攻
時 3月3日(金)午前9時
所 理学部 2号館 206号室
人 お よ び 題 目 (講 演 20 分, 討 論 7 分)
(1)石井 武君 (指導 鈴木濤師,大川 穀授) 鍋 ニップル 稀薄合金における転位の運動と固溶体硬化
(2) 今村 修武君 (指導 近角講師,中川教授) 磁性薄膜の高速 スイッチング
(3)内柴 秀磨君(指導 中川教授) デーMnZn3の結晶ひずみと反強磁性変態について
(4) 上村 克紀君(指導 長谷川 講師) Rudstam の公式とNuclear Evaporation
 (5) 川口 洋一君 (指導 川路助教授) P型 InAs のn型表面層における電気伝導
 (6) 河村 智士君 (木下教授) 素着膜成長の初期段階の電子顕微鏡による解析
(7)小島 明君 (指導 小川助教授) CdS単結晶の電気機械的性質
(8) 坂本明正君 (指導 小川助教授) マイクロ 波超音波の 発生及び検出

	物理-6 物理-6
	カラス中の22-87の孤取重に及保す 2-1240年の制造 田沢雄二
	一般以岩石中以含于以了238丁七, 名の腹核種234丁
	の activity rutho 13 1 2"ある。 いんし天然水, 成いな
	天然水起:原数物中等では、234 丁加,238 丁七の早衡量
	すりも10%も過朝にある手が明らのになっている。この
,	週朝の生かる原因は、それのくていう同位体の路出の過
	程にあるもとと考えられている。 このは年文でいす新し
	い仮説を提案し、たれにより非平衡の生いた原因
	も泥明する。 後端は壊疫時に放金されるく数子
	の tradeの 効果を中心となてられる。 単純化された
	made o 理論が打算され, Younded K基かいた実
	男気か行れれる。 nordel は具体的に取れたかうス
	に食きせた 226 Ru のら 人- decay に あっと 生 す"3 222 Ruの
	税数の、人下しんに限けに関けて作られる。
	Diffunction constition on it \$ 25 \$ 11, 222 Rom the St
	マシス社る(Sutie Rev)の作る電離電流を、積分
	型電漩區, 很勤客堂型硬值计 K F J 测定 12;
	今日せてもし、検討しれる。

田澤

1968年4月 京都大学理学部物理学第二教室 宇宙線研究室技官 (長谷川教授、山越助手)

山越助手 → 東大核研(現宇宙線研)に転出

深海底産宇宙塵の研究をスタート

1991年10月 長谷川先生亡くなる

助手に昇格

福岡

1967年4月	博士課程入学
1970年3月	同満了退学

- 1970年4月 学習院大学助手
- 1975年11月 米国オレゴン州立大学
 - 主に隕石の中性子放射化分析

1978年9月

宇宙塵のINAAの協力がはじまる 長沢教授 → 福岡

The 126th colloquium of the IAU 8/27 – 30, 1990

微小宇宙物質のINAAの問題点

- 内眼ではほとんど目視できない
 迅速取り扱い (短寿命核種:半減期2~10分)
- 2. 測定感度の向上
- 3. Geometryの近い固体標準物質

3X3mm高純度 ポリエチレンフィルム袋に封入

High pure quartz tube

Cross section

<u>upper view</u>

High pure quartz vial Easy handling Low dose Low contamination

Comparison of counting efficiency (⁶⁰Co 1173keV)

Detector type	efficiency (%)
Normal	1.9
Well	5.4
Use of well type Ge detec	tion for γ -ray counting

標準試料

親石元素(Fe, Mg, Ca, Na, K, Ti, REE, Sc, Co, Ta, etc.) 岩石標準試料から作製したガラス片 JB-1(GSJ岩石標準試料) JR-2(GSJ岩石標準試料) 親鉄元素(Ni, Os, Ir, Au) Allende(隕石)粉末: ジオメトリー, 均一性 **隕鉄のチップ(Canyon Diablo)**: 不均質 純金属線のチップ: Osの純金属線はない IrやAuは照射後の放射能が強すぎ 真空蒸着したシリコンウエハのチップ: 不均質, 蒸着面積 と重量の対応 合金の破片(田中貴金属工業社作製): 均一性,元素濃度 高純度白金線(SRM 680a): Ir~0.01ppm Al/Au合金(IRMM-530): Au 0.1%

Chemical composition of Canyon Diablo

		Tazawa & Fujii	Tazawa	Vdovykin	Fukuoka & Tazawa
		(1987)	(unpeblished)	(1973)	(1996)
wt	(μg)	79.9	72.8		158.6
Fe	%	86.6	98.6	92.3	90.3
Ni	%	=7.25	_	7.25	11.2
Co	ppm	6500	125	4900	3990
Os	ppm	-	_	3.60	4.7
Ir	ppm	=2.10	_	2.10	3.62
Au	ppm	=1.26	0.058	1.26	2.43
Cr	ppm	—	937	_	-

岩石標準試料から作製したガラスチップ (長沢さんの協力)

Au, IRMM-530 Al-Au wire 公表值: Au 0.1 %

Ir, SRM-680a Pt wire (公表値:Ir 7[~]10 ppb) 分析値:7.40±0.06 ppb

Fig. 1. SEM micrographs of typical spherules: (a) MZ-32-4 and (b) MZ-32-2, Ca-Ti-rich type (CTS) and Fe-Cr-Ni-rich type (FCN), respectively, collected from the Mizuho ice core at depths of 32 to 33.5 m; (c) ALH-9-01 and (d) ALH-9-02, chondritic, Au-S-undepleted type (CAS), collected from the Allan Hills bare ice. Scale bar = 100 μ m.

SPE, Fe and Cr abundances

ドームFuji生活水槽沈殿物中 のガラス質球粒

福岡孝昭(立正大) 田澤雄二(京大) 星 有哉(立正大)

協力:藤井 理行(極地研究所) 東 久美子(極地研究所)

assy spherules from Antarctica and those from Hungary									
	Dome Fuji	$Hungary^{1)}$							
	(present)	(Lower Triassic)							
SiO ₂	% (36-43)	37.2-45.5							
AI_2O_3	14.5-15.8	8.5-10.6							
FeO [*]	0.28-0.36	0-0.66							
MgO	4.5-6.3	6.5-9.3							
CaO	35.2-39.8	31.1-39.5							
Na ₂ O	0.19-0.21	0.28-0.46							
K ₂ O	0.28-0.36	0.56-1.23							
MnO	0.15-0.22	0.55-1.03							
BaO	0.08-0.09	2.18-2.96							
SO ₃		0.85-1.76							

Comparison of chemical compositions between gla

*: Total Fe as FeO

1): Dosztaly L. and Don G. (1997), Glassy spherules from Hungary, their identification and geochemical features (abstract). Int. Natl. Symp IGCP-384, Tallinn, 24-25

	Dome Fuji Water tank	Hungary	Chondrite	Moon	Mars	HED	Comet
Major elements	Ultra basic Ca-rich, Fe-poor	Ultra basic Ca-rich, Fe-poor	Chondritic	Fract.	Fract.	Fract.	?
REE pattern Fract. Fract.		Flat	Eu anomaly	Fract.	Flat to Fract	?	
Siderophiles	no	no	yes	no	no	no	?
Stratigraphic age	Present	Lower Triassic					

南極ドームFuji基地水槽沈殿物 中のガラス質球粒は彗星起源の 可能性あり!

			Mineral ²⁾		
	Dome Fuji	Hungary ¹⁾	wool shot	Slag wool ³⁾	Rock wool ³⁾
SiO ₂ %	(36-43)	37.2-45.5	35.4	40.25	44.68
Al_2O_3	14.5-15.8	8.5-10.6	18.3	13.75	14.11
FeO^*	0.28-0.36	0-0.66	0.8	0.45	6.63
MgO	4.5-6.3	6.5-9.3	7.9	4.35	9.29
CaO	35.2-39.8	31.1-39.5	34.9	36.61	18.01
Na ₂ O	0.19-0.21	0.28-0.46	0.9	0.49	1.92
K ₂ O	0.28-0.36	0.56-1.23		0.54	0.73
MnO	0.15-0.22	0.55-1.03		0.45	0.2
BaO	0.08-0.09	2.18-2.96		0.08	0.05
SO ₃		0.85-1.76		0.51	0.27

Comparison of chemical compositions between glassy spherules from Antarctica, those from Hungary, mineral wool shot, slag wool, and rock wool.

*: Total Fe as FeO

1): Dosztaly L. and Don G. (1997), Glassy spherules from Hungary, their identification and geochemical features (abstract). *Int. Natl. Symp IGCP-384,* Tallinn, 24-25

2): Cross C. A. (1971), Formation of glass spherules on the moon. *Nature*, 233, 185-186.

3): Marini F., Dosztaly L., Don G. and Detre Cs. (1999), Glassy spatters in mid-Triassic limestones from Aszófö (Hungary): Anisian tektites, Tethysian volcanites, or modern slag-wool contaminants? (Extended Abstract) *The 1998 Ann. Meeting of IGCP-384, Budapest, Special Volume, Hungarian Academy of Science,* Budapest (2000)

南極ドームFuji基地の水槽沈殿物中の ガラス質球粒の起源は 断熱材であった。 **其見記酒ではたかった**

彗星起源ではなかった!!

採取地点 試料数(個)								
Dome Fuji	6							
南やまと	5							
くわがた	9							
とっつき	33							
	53							

とっつき③ーa

Sample	Weight	Ti	Al	Fe	Mn	Mg	Ca	Na	К	V	Cr
	μg	%	%	%	%	%	%	%	%	ppm	ppm
TPA046	2.9	0.082	1.40	15.5	0.0404	9.73	0.39	0.254	0.11	78.5	3660
TPA052	12.0	0.090	1.24	28.6	0.149	12.1	0.71	0.171	0.066	143	4280
TPA053	4.7	0.13	1.34	20.0	0.137	9.32	0.16	0.234	0.097	73.5	3180
TPA060	6.5	0.16	1.19	22.4	0.213	9.46	0.54	0.411	0.14	80.9	3170
TPA077	2.3	0.19	1.73	22.9	0.149	15.5	0.79	0.324	0.11	103	3860
TPA122	7.3	0.12	1.26	25.7	0.891	9.66	0.60	0.227	0.15	89.9	3410
TPA144	4.8	0.17	1.52	25.6	0.127	7.73	0.23	0.258	0.15	111	3810
TPB034	8.0	0.11	1.36	18.0	0.307	19.3	1.3	0.647	0.089	127	7210
TPD091	22.4	0.088	0.917	12.8	0.147	21.7	0.62	0.0729	0.010	129	4340
TPD096	16.2	0.084	0.753	22.5	0.287	17.0	0.53	0.158	0.037	66.7	2830
TPD149	1.2	0.17	1.61	22.4	0.332	10.1	1.1	0.423	0.15	110	3780
TPD204	4.2	0.11	1.34	24.8	0.102	8.54	0.40	0.358	0.089	95.4	3450
TPD244	24.7	0.061	0.978	28.9	0.249	11.1	0.63	0.0288	0.053	82.0	3780
TPD251	21.5	0.11	1.38	25.1	0.229	13.4	0.52	0.288	0.065	90.6	4240
JB-1(STD)	22.8	=0.79		=6.29	=0.118	=4.65	=6.61	=2.05	=1.19	=211	=425
JB-1(Sam)	14.0	0.73		6.48	0.117	5.38	6.80	2.06	1.17	218	533
ERROR ¹⁾	%	20-40% ²⁾	1-2%	0.3%	2-5%	6-9% ³⁾	20-40% ⁴⁾	3-5%	10-20% ⁵⁾	3-8%	0.3%

- 検出下限以下を示した 1)計数値による誤差を示した

1)計数値による誤差を示した
※以下、2)~5)は予想される誤差値で特に大きいものを示す
2)TPA046(53.7%) and TPD149(55.7%)
3)TPD149(13.4%)
4)TPA046(55.5%), TPA053(108%) and TPA144(76.2%)
5)TPD091(162%), TPD096(32.2%) and TPD244(41.2%)

とっつき③-b

Sample	Weight	La	Sm	Yb	Lu	Sc	Co	Ni	Ir	Au
	μg	ppm	ppm	ppm	ppm	ppm	ppm	%	ppb	ppb
TPA046	2.9	0.35	0.163	0.201	0.0611	7.69	185	0.331	172	364
TPA052	12.0	0.28	0.137	0.214	0.0370	8.08	422	0.255	311	120
TPA053	4.7	0.44	0.136	0.219	0.0544	8.23	109	0.202	131	413
TPA060	6.5	0.43	0.165	0.271	0.0445	7.59	167	0.219	97.9	282
TPA077	2.3	0.53	0.222	0.241	0.0529	10.3	333	0.518	188	305
TPA122	7.3	0.27	0.144	0.182	0.0508	7.43	145	0.303	243	303
TPA144	4.8	0.35	0.0829	0.111	0.0417	6.36	215	0.459	278	244
TPB034	8.0	0.14	0.0786	0.202	0.0167	7.76	54.5	0.0560	_	2.83
TPD091	22.4	0.22	0.208	0.382	0.0306	11.6	373	0.681	177	34
TPD096	16.2	0.12	0.0196	0.0602	0.0202	4.90	11.3	0.132	85.0	6.51
TPD149	1.2	0.22	0.330	0.336	0.0768	9.50	154	0.323	144	383
TPD204	4.2	0.83	0.167	0.205	0.0477	8.52	147	0.232	110	322
TPD244	24.7	0.16	0.0749	0.117	0.0241	6.61	401	0.397	102	219
TPD251	21.5	0.47	0.221	0.226	0.0392	10.6	378	0.497	191	173
JB-1(STD)	22.8	=38.6	=5.13	=2.13	=0.31	=27.5	=38.2			
JB-1(Sam)	14	39.0	5.27	2.96	0.13	27.3	37.7			
ERROR ¹⁾	%	10-40% ²⁾	4-6%	6-15%	4-8%	0.5%	1%	1-5%	1-2%	1%

- 検出下限以下を示した

1)計数値による誤差を示した ※以下、2)~4)は予想される誤差値で特に大きいものを示す

2)TPB034(63.2%) and TPD149(92.2%)

宇宙塵回収手順

冷凍庫(−20°C)

氷の融解(2℃,32ステンレス製ビーカー, ポリエチレンシートでカバー,試料保管室)

吸引ろ過(クリーンルーム内ドラフト, 孔径 8μm・径47mmポリカーボネート製フィルター)

酢酸ブチル

金属製微粒子のSEM-EDSのZnピーク

