XMM-Newtonによる SNRのX線スペクトル解析

那須 悠太御堂岡 拓哉

大まかな発表の流れ

- •研究の背景
- 超新星残骸(SNR)について
- XMM-Newtonについて
- SNR 0534-69.9の解析(御堂岡)
- SNR N49の解析(那須)

研究の背景

● 超新星の重元素合成 ← 銀河の化学進化の観点から重要

- 超新星のメカニズムには未知の部分が多い
 → 超新星残骸を調べる
- ●解析対象(N49、0534-69.9)は大マゼラン雲(LMC)の 天体
 →観測に適する
 - ・星間吸収が少ない
- 波長分解能の高いRGS (XMM-Newton) を用いる
 →より精密な検証が可能に

超新星残骸(SNR)

- SNR(Supernova Remnant)は大質 量の恒星が超新星爆発をした後に残 る天体
- 恒星からの噴出物(ejecta)と星間物質 (Intersteller Medium : ISM)から構 成されている(右図参照)
- ejectaとISMは爆発の衝撃により加熱 され数千万度から数億度に達する高 温プラズマとなる
- これらはその後、数万年の間、
 可視光、電波、X線等で輝く

と衝突し、2つの衝撃波を形成

http://blogimg.goo.ne.jp/user_image/38/21/0765028c175a23df08bbc6b96aa2da0c.jpg

が熱膨張

Supernova

red : radio green : optical blue : X-ray

超新星爆発の分類(1)~la型SN~

考えられているメカニズム

- 連星系を成す白色矮星同士が合体 して起こる
- ② 連星系を成す白色矮星に相手の恒 星からガスが降り積もりチャンド ラセカール限界を越えた結果、熱 核融合の暴走により起こる

特徴

 大体の場合、ピーク時の絶対等級 はほぼ一定となる(天体までの距 離がほぼ正確にわかるため標準光 源として用いられる)

Institute of Astrophysics Andalusia

爆発後に鉄を多く含む

超新星爆発の分類(2) ~ CC型SN~

考えられているメカニズム

- 1.太陽の数倍から数十倍の質量を持つ恒星がHやHe から始まる核融合を繰り返すことによって、中心に Feを生成する
- 2.Feコアが光分解して重力崩壊(Core Collapse: CC) を起こし、その反動で衝撃波が発生し爆発が起こる
- 3.中心に生成された⁵⁶Niは放射性崩壊するが、この時のエネルギーにより超新星として輝く

特徴

- 主に銀河の渦状腕やHII領域で見られる
 が、楕円銀河では見られない
- 中心に中性子星やブラックホールを残す

上図:大質量で核崩壊直前の進化の終わった 恒星のタマネギのような層構造

https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/ Evolved_star_fusion_shells.svg/550px-Evolved_star_fusion_shells.svg.png

Shell-like SNR

Cassiopeia A

- 超新星残骸全体の7割を占める
- 衝撃波で圧縮された物質がシェル構 造を形成する
- 電波、X線共にシェル状で明るい

Mixed-Morphology SNR

red : radio green : optical blue : X-ray

W49B

- 電波でシェル状に明るいが、X線で中 心集中した構造を持つ
- 中心集中したX線は熱的な放射である

XMM-Newton

概要・特徴

- ・欧州宇宙機関(ESA)のX線観測衛星(1999年~現在)
- ・現在のX線観測衛星の中で
 望遠鏡の有効面積が最大
 ➡暗い天体の観測が得意

※バックグラウンドが多いために 広がった天体は苦手

・軟X線領域における

高いエネルギー分解能

今回の解析で使用 観測機器 ・EPIC (MOS, PN) :X線 ・RGS :X線 ・OM :可視光・紫外線

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/ documentation/uhb/overview.html#3681

X線観測衛星	XMM-Newton	Chandra	Suzaku
有効面積 [cm] (1keV)	1500×3台	800×1台	450×5台
エネルギー分 解能 [eV] (1 keV)	3 (RGS)	60 (ACIS)	6 (XRS)
エネルギー分 解能 [eV] (7 keV)	150 (EPIC)	150 (ACIS)	6 (XRS)

EPIC · RGS

MOS (MOS1, MOS2)

- 0.15 12 keV
- ・低エネルギーで検出効率が低い

PN

- 0.15 12 keV
- ・低エネルギーで検出効率が高い
- ・エネルギー分解能が低い
- ・高い時間分解能

High Dispersion Reflection Crating Nate Cool Reflecting Surface to CCD Sirls at secondary Toose 500 MM K-rays K-rays Cool Reflecting Surface to CCD Sirls at secondary Food Cool Reflecting Surface to CCD Sirls at secondary Food Cool Reflecting Stack Toose SNK Non Dispersed X-rays SNK Non Dispersed X-rays CCD Carriera As Prime Focus Escal Length 75C0 MM

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/ documentation/uhb/xraytel.html

RGS (RGS1, RGS2)

- 0.35 2.5 keV
- ・回折格子によるX線分光

➡高いエネルギー分解能

点源に適する

①RGS1・2の1次光のデータ、 RGS1・2の2次光のデータを それぞれ統合

②EPIC(MOS1, MOS2, PN) ・ソース・バックグラウンド領域を抽 出

・ソースからバックグラウンドを引い たスペクトルを作る

③スペクトルを適当なモデルでフィッ ティング:

単純なモデル→より複雑なモデル

N49 (MOS1) のイメージ

フィッティングに用いたパラメータ

- N_H:Hの柱密度 [cm⁻²]
- kTe: 電子温度 [keV]
- n_eT: ionization parameter [s·cm⁻³]
 (電子密度×爆発後の経過時間)
 →電離状態を表す
- 元素Zの**組成比(abundance)**=

0534-69.9の解析 (御堂岡)

0534-69.9の概要

- •距離:50kpc(LMC)
- •年齢:~1.0×104 yr
- •SN:la型(推定)
- シェル型
- 半径:2.0-2.4分角

(Hendrick et al. 2003, Takeuchi et al. 2016)

NASA/CXC/SAO

先行研究①

(Takeuchi et al. 2016)によると、中年齢以 上(>5000yr)のSNRの生成源である超新星爆 発のタイプ判別は以下の"Fe/Ne mass ratio" を用いて行うことができる

Fe/Ne mass ratioは(Anders E. et al. 1989)での太陽組成比を用いると

→NeとFeのabundanceがわかれば左図に当てはめ、la型かCC型か判断することができる

- 先行研究(Hendrick et al. 2003, Takeuchi et al. 2016)により わかっていること
 - 0534-69.9の年齢、半径
 - 日本のX線天文衛星Suzakuを用いて特定した温度とabundance
 - 残骸の発生源となったSNの種類をX線スペクトルから判別する手法

RGSの波長分解能

Wavelength (Å)

スペクトル解析手順

- 1. NASAのスペクトル解析ソフトXSPECを用いてfitting (解析が比較的簡単で計算が早いため)
- XSPECで定めたパラメータを参考にオランダ宇宙研究所 (SRON)のスペクトル解析ソフトSPEXを用いてfitting
 - ➡SPEXはRGSのデータ解析を想定して 作られたソフトのため、RGS特有の コマンドを活用してfittingができる

用いたモデル

温度一成分でのfitting結果

	結果		+
kt(high)[keV]	0.82 ±2.8E-2	s-1 keV-1	1
N(=O)	0.29 ±2.0E-2	ed counts	0.1
Ne	0.89 ±5.6E-2	normaliz	0.01
Mg	0.57 ±4.6E-2	or	10 ⁻³ 4
Si	0.54 ±5.8E-2	-model)/err	2 0
S	2.3 ±0.38	(data-	-2 -4
Fe(=Ni)	0.66 ±4.6E-2		
τ [s/cm³]	1.7E+10 ±9.3E+08		
<i>x</i> **2/dof	1479/542 <mark>(=2.73)</mark>	⇒_	二成

<u>XSPEC</u>での<u>EPIC</u>のfitting結果

三成分でのfitting結果

fitting結果(ISM成分)

fitting結果(ejecta成分)

元となるSNのタイプ判別

本研究でわかったこと

- 低温のISM成分に酸素と窒素のK輝線が存在し、 高温のejecta成分には鉄のL輝線が多く存在す ることがわかった
- ・先行研究の通りこのSNRはla型超新星により 作られた確率が高いことがわかった

He-likeイオンのtriplet

SNRの典型的なRGSスペクトル

標準的な進化モデルを辿ったSNRでは共鳴線が支配的である

N49の解析 (那須)

年齡

4.0 - 5.0×10³ yr

距離

50 kpc (大マゼラン雲 (LMC) に位置)

起源

コア崩壊(CC)型超新星

分類

mixed-morphology (MM) 型

特徴

過電離プラズマが見られる

(Uchida et al., 2015)

(James Long & the ESA/ESO/NASA Photoshop FITS Liberator)

先行研究(Uchida et al., 2015) で分かっていること

- ・各種パラメータ:温度、電離状態、組成比
- ・recombining plasma (RP)の存在(過電離)

本研究の目的 RGSの高精度なスペクトルを用いて、N49の過電離プラズ マを追加検証

フィッティングの流れ

解析ソフト XSPEC:計算が速い モデル・パラメータ ある程度確定 SPEX:XMM-Newtonを念頭に開発 →RGSの解析に適する

モデル

まず、

- ・ LMCの 星間吸収
- ・銀河系の星間吸収
- (既知:0.6 ×10²¹ [cm⁻²])
- ・SNRの電離非平衡プラズマ(1成分) のモデルでフィッティング

結果 (XSPEC) ①

電離非平衡プラズマ1成分

パラメータ	結果
Nн [×10 ²¹ cm ⁻²]	3.50
kT _e [keV]	0.23
n _e T [×10 ¹¹ cm ⁻³]	0.96
Ο	1.55
Ne	0.43
Mg	0.21
Si	2.61
S	34.2
Ar	3.56×10 ⁻³
Са	1.51×10 ⁻¹³
Fe (=Ni)	0.59
χ²/dof	4008/670

うまくfitできていない →電離非平衡プラズマを2成分にしてみる (Shell構造なので、ISMとEjecta?)

結果 (XSPEC) ②

電離非平衡プラズマ2成分

RGS vs EPIC

None

RGS vs EPIC

結果 (SPEX) ①

● RGSを用いて、EPICでは分離できなかった O VII triplet を分光できた →低温部分に過電離プラズマが存在する可能性がある

(共鳴線が弱まり、禁制線が強調されていた)

- 反省点
 - ・高エネルギー部分でフィッティングが良くなかった
 - ➡フィッティング手法の問題?
 - ・フィッティングがうまくいかなかったため、エラーの計算
 ができなかった

● 課題

・フィッティングを改善し、過電離プラズマの存在のより信頼性の高い
 証拠を得る

- RGSの高い波長分解能を生かした解析ができた
- シェル型構造であることを仮定したモデルは適当
- より波長分解能の良いひとみ代替機に期待したい