P5.P6 実験ゼミ、演習について

ver.4, 2017/6/7

1 担当教員

名前	部屋	電話	e-mail
スタッフ			
田中 孝明 (宇宙線研究室 助教)	327	075-753-3869	ttanaka
内田 裕之 (宇宙線研究室 助教)	338	075-753-3827	uchida
高田 淳史 (宇宙線研究室 助教)	336	075-753-3843	takada
TA			
井戸垣 洋志 (宇宙線研究室 M1)	325	075-753-3867	idogaki.hiroshi.47m@st.kyoto-u.ac.jp
TRA			
吉川 慶 (宇宙線研究室 D1)	325	075-753-3867	yosikawa

注意: e-mail address は、後ろに"@cr.scphys.kyoto-u.ac.jp" をつける。

質問などはいつでも歓迎です。

2 学生名簿

子	土	乍	淠	

班	名前	発表順			
火–A	御堂岡 拓哉	4	P6		
火–A	天野 雄輝	1	P6		
火–B	林 航大	5	P5		
火–B	加藤 文弥	8	P5		
火–B	田中 友啓	7	P5		
火-C	木村 和貴	3	P5		
火-C	關 嵩覚	6	P5		
火-C	馬場 亮太	2	P5		

火曜班

A 班担当: 田中 孝明

B 班担当: 内田 裕之

C 班担当: 高田 淳史

木曜班

班	名前	発表順	
木-A	阿部 光	1	P6
木-A	山本 竜二	6	P6
木-A	那須 悠太	2	P6
木–B	阿部 賢	3	P6
木–B	石和 卓真	7	P6
木 -C	古谷 侑士	5	P5
木-C	丹下 真希	4	P5

A 班担当: 田中 孝明

B 班担当: 内田 裕之 C 班担当: 高田 淳史

3 前期の進め方

3.1 時間、場所

開始時間は火曜班は火曜日 14:45、木曜班は木曜日 14:45 です。まずゼミを 1 時間程度行い、続いて休憩を狭んでから実験に移ります。場所は理 5 号館北棟 366 号室(実験ゼミ)および 262 号室(実験演習)です。

3.2 実験ゼミの進め方

以下にあげる各課題に一人ずつ担当を決めます。担当の人は、各課題を自分なりにまとめ、約一時間で「授業」をしてください。つまり、他の人は知識がないと仮定して、それでもわかるように説明して下さい。その際には、プリントなどを用意するように。

担当以外の人は勉強しなくて良いのではなく、あらかじめ予習して、質問事項をまとめておくこと。

3.2.1 教科書・参考書

今年度は以下の本を、基本的な教科書として指定します。

培風館 新物理学シリーズ 26 山内恭彦監修 放射線計測 加藤貞幸著 理学部中央図書室 (539.62||KA)

日本評論社 シリーズ現代の天文学 8 ブラックホールと高エネルギー現象 小山勝二・嶺重慎編 理学部中央図書室 (440.8||TE||8), 理学部物理図書室 (L||SGT||8)

参考書としては、例えば以下の通り。これらに限らず、自分で色々探してあったものを見付けて勉強 してください。今のうちから積極的に英語の文献にあたっておくと、より勉強になるでしょう。

- 1. Techniques for nuclear and particle physics experiments: a how-to approach / William R. Leo; Springer; 理物理図 (B1-A||L||39a, B1-A||L||39b, B1-A||L||42a, B1-A||L||42b), 理中央図 (429.6||LE)
- 2. 粒子線検出器:放射線計測の基礎と応用 / K. クラインクネヒト著;高橋嘉右, 吉城肇共訳; 培風館; 理物理図 (B1-A||K||44a, B1-A||K||44b), 理中央図 (429.2||KL)
- 3. 放射線計測の理論と演習 上巻、下巻/ ニコラス・ツルファニディス著; 阪井英次訳; 現代工学社; 理物理図 (J1-B||T||1-1, J1-B||T||1-2), 理中央図 (429.2||TS||1, 429.2||TS||2)
- 4. 放射線計測ハンドブック第 4 版 / グレン F. ノル著;神野郁夫, 木村逸郎, 阪井英次訳; 日刊工業新聞社; 附図 (MC||215|| ホ 7), 理物理図 (O||288)

3.2.2 ゼミの課題

- 1. X線・ガンマ線と物質の相互作用・電離損失 (荷電粒子と物質の相互作用の1つ)
- 2. 放射線検出器の特徴とガス検出器: 特徴・電離箱・比例計数管・ガイガーミュラー
- 3. シンチレーションカウンター・光電子増倍管・マイクロチャネルプレート
- 4. 半導体検出器
- 5. † 放射線計測用電子回路: オペアンプ・前置増幅器 (pre amp.)・積分回路・微分回路・波形整形増幅器 (shaping amp.)。
- 6. 放射線統計
- 7. 実際の実験装置を自由に選んでレポート。例えば、すざく衛星 (X 線)、Fermi 衛星 (GeV ガンマ線)、MAGIC 望遠鏡 (TeV ガンマ線)、暗黒物質探査、重力波検出器、カミオカンデ etc.

†電子回路は重要なのに、残念ながら教科書には記述がありません。従って参考書 "Techniques for nuclear and particle physics experiments: a how-to approach / William R. Leo" の第 14章、鶴のエレクトロニクス講義ノート (http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/html/jiang_yi.html) の 1, 2, 5, 6章を参考にして、他の文献もあたりながら調べて下さい。

3.2.3 実験ゼミスケジュール

前期は、上記の表1のスケジュールで行います。

表 1: 実験ゼミスケジュール

日付	火–A, B & C (TA 井戸垣, TRA 吉川)	木–A, B & C (TA 井戸垣, TRA 吉川)
4/25 内田	X線・ガンマ線と物質の相互作用・電離損 失 (荷電粒子と物質の相互作用の1つ)	
4/27 高田	——————————————————————————————————————	X線・ガンマ線と物質の相互作用・電離損 失 (荷電粒子と物質の相互作用の1つ)
5/9 田中	放射線検出器の特徴とガス検出器、放射線 統計	_
5/11 内田		放射線検出器の特徴とガス検出器、放射線 統計
5/18 高田		シンチレーションカウンター、放射線検出 用電子回路
5/23 田中	シンチレーションカウンター、放射線検出 用電子回路	_
6/1 内田	_	半導体検出器、実際の実験装置レポート
6/6 内田	半導体検出器、実際の実験装置レポート	_
6/15 田中	_	天体観測
6/20 高田	天体観測 (2 課題)	_
6/29 高田	_	天体観測 (2 課題)
7/4 田中	天体観測、実際の実験装置レポート	_

3.3 実験演習の進め方

ゼミが終ったあと、しばらく休憩を狭んでから実際に検出器を動かしてもらいます。P5、P6 それぞれ3班に分かれて、それぞれ異なる検出器を動かしてもらいます。

1日で消化しきれなかった実験は、後日別の日に行なってください。レポートを書くにあたり、足りないところを別の日に実験したい場合があると思います。また、興味が湧き自分のアイデアで実験したい場合もあるでしょう。その場合は、P6 スタッフに申し出て頂ければ対応致します。実験には放射線源を使用するので、黙ってやらずに、必ず申し出ること¹。

オシロスコープなどの実験器具は、もし数が足りなければ A7 A8 のものを使用して頂いて結構です。 その場合は、実験終了後に元の位置に戻しておいてください。

¹皆さんが使用する密封放射線源は微弱で、健康を害するようなことはありません。しかし、「放射性物質」に対する社会的な認識や規則はそこを問題にしません。事故があった場合は、最低でも社会的な問題になります (新聞沙汰)。高い確率で教員は処分されることになります。従って管理は慎重に行うこと。

実験演習予定は表2の通りです。スペースの関係で実験は2班までしか行なえませんので、適宜実験演習無しの日が入ります。

表 2: 実験演習スケジュール

	火–A 班	火–B 班	火–C 班	木–A 班	木–B 班	木-C班
4/25 (火)	半導体検出器		シンチ1			
4/27 (木)				シンチ1		半導体検出器
5/9 (火)		半導体検出器	シンチ2			
5/11 (木)				シンチ2	シンチ1	
5/18 (木)					シンチ2	シンチ1
5/23 (火)	シンチ1		半導体検出器			
6/1 (木)				半導体検出器		シンチ2
6/6 (火)	シンチ2	シンチ1				
6/15 (木)					半導体検出器	
6/20 (火)		シンチ 2				
6/29 (木)	ゼミ 2 課題のため実験演習無し					
7/4 (火)	ゼミ 2 課題のため実験演習無し					
7/31 (月)	レポート提出締め切り					

3.4 レポート

前期最後に、自分の実験結果に基いて、各検出器の特性をまとめたレポートを提出して頂きます。できればコンピュータでレポートを書いて頂きたいですが、手書を拒否するわけではありません。締め切りは 7/31。時間がないので、実験が終ったらその都度まとめていくようにしてください。

4 後期の進め方

後期は P5 と P6 は別々に行ない、我々は P6 を担当します。その際、P5 と P6 の間の移動は若干名なら可能です。

P6 は 3,4 組に分かれ、それぞれに実験、シミュレーション、X 線天体データ解析などのテーマを与えます。後期の進め方は、また後日相談しましょう。

5 その他

5.1 計算機、メール

北館 266 号室の計算機は自分たちで自由に使って頂いて結構です。root のパスワードを教えますので、 自由に PC を設定してください。ただし、root のパスワードを変更することは厳禁です。

連絡には mail を使います。各自 mail address を我々に報告してください。長いメールを送る場合も 多々有るので、携帯だけでは不便かも知れません。もし PC を持っていれば PC mail も利用した方が 良いでしょう。

5.2 コピーカード

P6 教員担当の実験ゼミ、実習に関してコピー機を使用する場合は、P5, P6 所属に限らず P6 用のコピーカードを使って頂いて結構です。327 号室にあります。

5.3 電話

266 号室の電話の内線番号は 83869 です。ただし、内線電話としか使用できません。外線着信、発信は出来ません。

5.4 回路室

P6 教員担当の実験やゼミに必要な物品は、P5, P6 所属に限らず回路室(4 号館地下)で購入できます。暗証番号、買物の仕方は、必要があれば教えますので、我々に申し出てください。

5.5 生協

P6 教員担当の実験やゼミに必要な物品は生協での買物も可能です。P6 担当教員に申し出て P6 用校費カードを受け取り、これを用いて購入して下さい。その際、必ず納品書、見積書、請求書をもらうこと。これらの書類はすぐに担当教員に渡すこと。購入時に「仮納品か同時請求か」と尋ねられたら、同時請求と答えてください。