すざく衛星を用いた超新星残骸の大域的なX線スペクトルの解析

京都大学理学部物理系 P6(宇宙線研究室) 解析班 青木 莉子

石崎 貢平

研究の概要

1. Suzaku衛星の公開データを用いて超新星残骸を解析する

- 観測で得られるスペクトラムを適当なモデルでfittingし、 温度・元素量・その他物理パラメーターの測定
- 2. X-ray Imaging Spectrometer (XIS)を使用
 - 0.2keV-12keV (もちろんX線帯域)
- 3.解析対象: Vela jr(石崎)、Cygnus Loop(青木)
 - どちらもシェル型・重力崩壊型

- 1. 超新星残骸の物理
- 2. 観測装置
- 3. Cygnus Loop (青木)
- 4. Vela jr (石崎)

超新星残骸の物理

1.高温·非平衡プラズマのデータ提供 2.爆発前の天体の情報がわかる

超新星残骸とは?

1. 超新星爆発で生まれる高温ガス

- 温度:kTe~0.1-数keV
- プラズマ状態
- 衝突電離非平衡
 - Non Equilibrium Ionization (NEI)
- 2. || 型(重力崩壊型)の特徴
 - 中心にコンパクト星を形成
 - Ia型(炭素爆燃型)は作らない
 - O,Ne,Mgが多い

SN1006(ChandraによるX線画像) (Credit: NASA/CXC/SAO)

爆発に伴う衝撃波→シェル(低温)・イジェクタ(高温)を形成

超新星残骸における放射過程

1.連続成分

- シンクロトロン放射
 プラズマによる制動放射
 2.離散成分
 - イオンの輝線

べき乗則モデル

NEIモデル(熱的放射)

2.プラズマによる制動放射

3. 超新星残骸における輝線

元素Mのabundance =

$$\frac{n(M)_{SNR}/n(H)_{SNR}}{n(M)_{sun}/n(H)_{sun}}$$

Mのイオンの存在比→温度と電離パラメーターで特徴付け

1. 超新星残骸からは放射(NEIモデル+Powerlaw)と星間吸収 (Wabsモデル)が観測される

2. NEIモデル・星間吸収・べき乗則でフィッティングする

くわしく知りたい方のために

1. 超新星残骸の放射過程について

- 日本評論社,天体物理学の基礎 II (観山 et al) 2.超新星残骸の概要について

- 日本評論社,星間物質と星形成 (福井 et al.)

3.フェルミ加速理論について

- Cambridge,High Energy Astrophysics (S.Longair) 4.超新星について

- 日本評論社,超新星(山田)

5.その他に「天文月報」の解説記事など

観測の説明へ

すざく

2005年に打ち上げられた日本で5番目のX線天文 衛星(2015年に運用終了)

搭載された機器 X線反射望遠鏡(XRT) X線CCDカメラ(XIS) X線マイクロカロリメータ(XRS) 硬X線検出器(XHD)

ojaxa

- エネルギー分解能が良い
- バックグラウンド(NXB)が低い
 →広がった天体に対して有利

XRT(X-ray Telescope)
 4台はXIS、1台はXRSに焦点

 XIS (X-ray Imaging Spectrometer) 0.2~12keVで観測が可能 表面照射型(XIS0,2,3) 裏面照射型(XIS1)

- RMF ARF スペクトル
- NXB

lacksquare

lacksquare

Cygnus Loop の解析

Cygnus Loop

● どんな天体か

- 1774年にWilliam Herschelによって発見
- 年齢が約10,000年の古い超新星残骸
- 距離は540(-80, +100)pc
- これまでの研究でわかっていること
 - shellやejectaの温度
 - 組成
- 今回の目的
 - 観測の統計性をあげる
 - すざく終了までのデータを足すことで高いエネルギー
 でのスペクトルの構造を知ることができるかもしれない

用いるデータについて

- 観測の数 74
- XIS2のデータは使わない

→不具合で運用を途中で辞めたためデータが一部しかない

SUZAKU			
504016010 (BLOWOUT6)	504017010 (FESI1)	504018010 (FESI2)	
505009010 (CYGNUS LOOP 1)	505010010 (CYGNUS LOOP 2)	505011010 (CYGNUS LOOP 3)	
505012010 (CYGNUS LOOP 4)	505013010 (CYGNUS LOOP 5)	505014010 (CYGNUS LOOP 6)	
505015010 (CYGNUS LOOP 7)	505016010 (CYGNUS LOOP 8)	505017010 (CYGNUS LOOP 9)	
505018010 (CYGNUS LOOP 10)	505019010 (CYGNUS LOOP 11)	505020010 (CYGNUS LOOP 12)	
505021010 (CYGNUS LOOP 13)	505022010 (CYGNUS LOOP 14)	505023010 (CYGNUS LOOP 15)	
505024010 (CYGNUS LOOP 16)	505055010 (BLOWOUT SHELL 1)	505056010 (BLOWOUT SHELL 2)	
506007010 (CYGNUS LOOP W-B-N)	506008010 (CYGNUS LOOP W-B-S)	506011010 (CYGNUS LOOP BLOWOUT1)	
506012010 (CYGNUS LOOP BLOWOUT2)	506013010 (CYGNUS LOOP BLOWOUT3)	506014010 (CYGNUS LOOP BLOWOUT4)	
506015010 (CYGNUS LOOP BLOWOUT5)	506016010 (CYGNUS LOOP BLOWOUT6)		

Image

エネルギーは 0.5~3KeV
中央部分はすざく での観測がない

region

• 水色 shell

ピンクと緑 ejecta

model fitting

スペクトルをfitting したときのモデル (shell、ejecta共に同じモデルを使用)

constant<1>(wabs<2>(vnei<3> + vnei<4> + gaussian<5>) + wabs<6>*powerlaw<7>)

shell

パラメー タ	結果	エラー (ー)	エラー (+)
温度high (keV)	0.29	8.0x10 ⁻⁴	3.8x10 ⁻³
0	0.24	1.9x10 ⁻³	9.8x10 ⁻³
Ne	0.56	1.9x10 ⁻²	8.2x10 ⁻³
Mg	0.36	1.2x10 ⁻²	1.3x10 ⁻²
Si	0.61	4.1x10 ⁻²	3.1x10 ⁻²
Fe	0.23	3.6x10 ⁻³	7.8x10 ⁻³
温度low (keV)	0.11	2.7x10 ⁻⁴	2.6x10 ⁻⁴
0	0.24	1.9x10 ⁻³	9.8x10 ⁻³
Ne	0.56	1.9x10 ⁻²	8.2x10 ⁻³
Mg	0.36	1.2x10 ⁻²	1.3x10 ⁻²
Si	0.61	4.1x10 ⁻²	3.1x10 ⁻²
Fe	0.23	3.6x10 ⁻³	7.8x10 ⁻³
X ² /dof	1.58		

XIS0 XIS1 XIS3 ejecta

パラメー タ	結果	エラー (ー)	エラー (+)
温度high (keV)	0.46	4.2x10 ⁻³	3.8x10 ⁻³
0	0.17	7.4x10 ⁻³	2.0x10 ⁻²
Ne	0.47	1.6x10 ⁻²	1.9x10 ⁻²
Mg	0.24	3.1x10 ⁻²	3.1x10 ⁻²
Si	2.21	0.27	0.13
Fe	0.58	1.2x10 ⁻²	6.1x10 ⁻²
温度low (keV)	0.21	1.7x10 ⁻³	2.0x10 ⁻³
0	0.25		
Ne	0.56	shellのアバンダン スで固定	
Mg	0.34		
Si	0.56		
Fe	0.22		
X²/dof	1.51		

考察

- ejectaの低温部分はRegionがshell部分を含んでいる
- ejectaの0.5keV付近の残差はcontaminationの 影響だと考えられる
- アバンダンスについて(Uchida 2009)

χ²/dofは先行研究の値の方が小さい それぞれの誤差の値は今回の方が1~2桁小さい

Vela jr の解析

Vela jr の解析

1.1998年にROSATの全天観測で発見 2.強いシンクロトロン放射

3. 天球面上で Vela SNR と重なっている

ROSAT によるVela SNRの画像(左:soft X-ray 右:hard X-ray)

(引用元:Aschenbach, 1998)

目標: Vela jr と Vela SNRのスペクトルの分離

Fitting model ver 0.1

Vela SNR (低エネルギー) Vela jr

「非平衡プラズマの熱制動放射」+輝線

シンクロトロン放射

星間吸収(wisconsin cross section を利用) →パラメーターは固定

観測·解析結果 ver 0.1		Vela
data and folded model	nH(1)(1e+20 atoms / cm^2)	3.0(freeze)
	kT_e(keV)	0.33+-0.01
	0	1.64+-0.14
	Ne	3.73+-0.30
	Fe	0.64+-0.05
	電離パラメータ (1e+10 s*cm^3)	5.16+-0.31
	nH(2)(1e+20 atoms / cm^2)	9.0(freeze)
-10 - 1 - 2 0.5 1 Energy (keV) bthtst 21-Fab-2017 19:30	べき	2.31+-0.01
Black:XIS0(FI) Red:XIS1(BI) Green:XIS3(FI)	chi-squared/dof	5.19[dof=1353]
	このモデノ	レは不適

Fitting model ver 1.0

F(E) = wabs(1)*nei(1)+wabs(2)*(nei(2)+powerlaw)

Vela SNR (低エネルギー)

Vela jr (高エネルギー)

「非平衡プラズマの熱制動放射」+輝線

シンクロトロン放射

星間吸収(wisconsin cross section を利用) →パラメーターは固定

red:0.3-0.6keV green:0.6-1.0keV blue:1.0-5.0keV

観測·解析結果 ver 2.0

Black:XIS0(FI) Red:XIS1(BI) Green:XIS3(FI)

	Vela SNR	Vela jr
nH(1e+20 atoms / cm^2)	3.0(freeze)	9.0(freeze)
kT_e(keV)	0.20+-0.01	1.71+-0.43
Ν	1.28+-0.17	1.0(freeze)
0	0.86+-0.06	2.59+-0.35
Ne	4.07+-0.29	1.46+-0.19
Mg	1.0(freeze)	1.21+-0.15
³ Fe	1.72+-0.22	0.16+-0.03
電離パラメー ター (1e+10s*cm^3)	7.48+-1.39	2.33+-0.61
べき		2.20+-0.01

chi-squared/dof 2.26[dof=1353]

考察

- 1.モデルは観測データと合わなかった
- 2.解析結果はVela jrの特徴をよく反映している。(年齢・元素比)
- 3.シンクロトロン放射のべき(2.20)は先行研究(Takeda et al. 2016)の2.93+-0.02よりも低く出た
- 4.低エネルギー側でBI型とFI型で差異が見られた
 - 解析(データの結合過程)に問題あり?or汚染物質?

Vela jr と Cygnus Loopの比較

	Cygnus Loop	Vela jr
大きさ	大きい	小さい
年齢	としより	若い
温度	低い	高い
O,Neの abundance	低い (~0.2,~0.5)	高い (2.59,1.46)
Feの abundance	高い (~0.22)	低い (0.16)

バッググラウンド

