。反跳電子計測のための フォトダイオードの性能評価

課題研究P6 宮本奨平 竹村泰斗

1.研究の目的 2.検出器 3.検出器の原理 4.セットアップ 5.測定結果と解析結果 6.まとめ

COMPTELによる全天観測

V. Schönfelder+ (A&AS, 2000)

1.研究の目的

課題は感度の低さ

他のエネルギー領域に 比べて感度が悪い

●コンプトン散乱が優位になる
●バックグランドが大きい
●フラックスが小さい

1.研究の目的 電子飛跡検出型コンプトンカメラETCC コンプトン散乱を利用したガンマ線望遠鏡

1.研究の目的

1.研究の目的

1.研究の目的 2.検出器 3.検出器の原理 4.セットアップ 5.測定結果と解析結果 6.まとめ

2. 検出器

PDのみで測定

・ベータ線を止める
・ガンマ線は透過する

PD+シンチで測定

- ベータ線も
- ガンマ線も止める

2. 検出器

Si PIN photodiode S3590-01 (HAMAMATSU)

シンチレーター(GSO)

研究の目的 検出器の原理 セットアップ 測定結果と解析結果 まとめ

3.検出器の原理

1.研究の目的 2.検出器 3.検出器の原理 4.セットアップ 5.測定結果と解析結果 6.まとめ

ノイズ対策①

金属網でケーブルを シールドする

PDとCSAの 距離を短くする

測定装置のセットアップ

4.セットアップ

Shaperを通した波形

4.セットアップ FADCで見た波形 Sr90のβ線波形(2MeV) (mV) PDのみ 電圧 luuh. (µs) 時間 307.6

1.研究の目的 2.検出器 3.検出器の原理 4.セットアップ 5.**測定結果と解析結果** 6.まとめ

Sr90のβ線積分結果

5.測定結果と解析結果 ベータ線を検出できた

Sr90のβ線 (PD+シンチ)

Sr90のβ線 (PDのみ)

PD

PD+GSO

カウント数の比較

PD	イベント数	測定時間(s)	単位時間当たりのカウント(/s)
Sr90	5000	112	44.6
Cs137	5000	812	6.16
Mn54	5000	716	6.98

Sr : Cs : Mn = 1 : 0.138 : 0.157

PD+シンチ	イベント数	測定時間(s)	単位時間当たりのカウント(/s)
Sr90	2000	1176	I.70
Cs137	1000	272	3.68
Mn54	1000	548	I.82

Sr : Cs : Mn = 1 : 2.16 : 1.07

1.研究の目的 2.検出器 3.検出器の原理 4.セットアップ 5.測定結果と解析結果 6.まとめ

6.まとめ

目的 ETCCの測定エネルギーを高エネルギー側に伸ばすための PDを用いた高エネルギーベータ線の測定実験。

結果	I. PDでベータ線は止まり、
	ガンマ線は透過していることが分かった。
	2. しかし、信号か小さいので、ノイスの影響を 大きく受けあまりきれいな波形け得られなかった
	3. エネルギー較正は出来なかった。
今後	I. プリント基板を用いて回路を作成しなおし
	さらなるノイズの軽減を図る。
	2. ETCC内で使用する際は、単にベータ線が検出器外部に
	逃げてしまったという信号を达るために使用する。

付録:ガンマ線と物質の相互作用

http://blog.livedoor.jp/nijhousi/archives/52050993.html

付録:CsI37のガンマ線 (PD+GSO)

付録:Mn54のガンマ線 (PD+GSO)

●現在のMeVガンマ線天文学の抱える問 題は、他のエネルギー領域に比べて感 度の良い観測器がないことである。そ こで今回は、ETCC内のベータ線検出 器に用いる前提でフォトダイオードの 性能を調べた。結果は、ノイズが大き く、信号が弱いため、波形がノイズの 影響を大きく受けたいびつな形になり ベータ線検出器としては不向きである ことが分かった。