反跳電子計測のための フォトダイオードの性能評価

課題研究P6 宮本奨平 竹村泰斗

目次

- 1.研究の目的
- 2.検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

MeVガンマ線天文学

• MeVガンマ線で見えること

- ●ブラックホール
- ●ガンマ線バースト

COMPTELによる全天観測

V. Schönfelder+ (A&AS, 2000)

課題は感度の低さ

他のエネルギー領域に 比べて感度が悪い

- ●コンプトン散乱が優位になる
- ●バックグランドが大きい
- ●フラックスが小さい

電子飛跡検出型コンプトンカメラETCC

コンプトン散乱を利用したガンマ線望遠鏡

散乱ガンマ線の エネルギーと吸収点 + 反跳電子の エネルギーと方向

ガンマ線の 入射方向とエネルギー

研究の目的①

ETCCの断面図

研究の目的2

ETCCの断面図

電子を受けとめる検出器が必要!

フォトダイオード

利点

安価薄い

信号の取り出しが容易 読み出し回路が単純

- 2.検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

測定方法①

電子は止めたいが ガンマ線は通したい

2種類の測定を行い 結果を比較した

測定方法②

PDのみで測定

- ベータ線を止める
- ガンマ線は透過する

PD+シンチで測定

- ベータ線も
- ガンマ線も止める

検出器

Si PIN photodiode S3590-01 (HAMAMATSU)

シンチレーター(GSO)

検出器と線源の配置

- 1.研究の目的
- 2.検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

3.検出器の原理

電子のエネルギー

pin接合による放射線検出

無機シンチレータ発光原理

伝導帯

価電子帯

- 1.研究の目的
- 2.検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

前置增幅器 (自作)

ノイズ対策①

シャーシで覆う

金属網でケーブルをシールドする

PDとCSAの 距離を短くする

ノイズ対策②

電源同士の GRDの強化

クランプフィルタ

Sr90のβ線(2MeV)

PD+シンチでの測定

測定装置のセットアップ

Shaperを通した波形

shaperを通さない波形

PD+シンチでの測定

FADCで見た波形

- 1.研究の目的
- 2. 検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

解析方法

解析結果

Sr90のβ線 積分結果

線源なしの場合

ベータ線を検出できた

ノイズのみの測定結果

Sr90のβ線 (PD+シンチ)

ノイズのみの測定結果

5. 測定結果と解析結果

ガンマ線の透過率を比較

比較方法

- 1.PDとPD+GSOのそれぞれで Sr90、Cs137、Mn54を測定
- 2.単位時間当たりのカウント数を比較

PD

PD+GSO

カウント数の比較

PD	イベント数	測定時間(s)	単位時間当たりのカウント(/s)
Sr90	5000	112	44.6
Cs137	5000	812	6.16
Mn54	5000	716	6.98

Sr : Cs : Mn = 1 : 0.138 : 0.157

PD+シンチ	イベント数	測定時間(s)	単位時間当たりのカウント(/s)
Sr90	2000	1176	1.70
Cs137	1000	272	3.68
Mn54	1000	548	1.82

Sr : Cs : Mn = 1 : 2.16 : 1.07

ガンマ線が透過していると言える

- 1.研究の目的
- 2. 検出器
- 3.検出器の原理
- 4.セットアップ
- 5.測定結果と解析結果
- 6.まとめ

まとめ

目的

ETCCの測定エネルギーを高エネルギー側に伸ばすための PDを用いた高エネルギーベータ線の測定実験。

結果

- PDでベータ線は止まり、
 ガンマ線は透過していることが分かった。
- しかし、信号が小さいので、ノイズの影響を 大きく受けあまりきれいな波形は得られなかった。
- 3. エネルギー較正は出来なかった。

今後

- I. プリント基板を用いて回路を作成しなおし さらなるノイズの軽減を図る。
- 2. ETCC内で使用する際は、単にベータ線が検出器外部に 逃げてしまったという信号を送るために使用する。

付録:ガンマ線と物質の相互作用

http://blog.livedoor.jp/nijhousi/archives/52050993.html

付録:Sr90のベータ線 (PD+GSO)

付録: Cs137のガンマ線 (PD)

付録:Cs137のガンマ線 (PD+GSO)

付録: Mn54のガンマ線 (PD)

Mn5400835keV

付録:Mn54のガンマ線 (PD+GSO)

付録:発表内容の要約

• 現在のMeVガンマ線天文学の抱える問 題は、他のエネルギー領域に比べて感 度の良い観測器がないことである。そ こで今回は、ETCC内のベータ線検出 器に用いる前提でフォトダイオードの 性能を調べた。結果は、ノイズが大き く、信号が弱いため、波形がノイズの 影響を大きく受けたいびつな形になり ベータ線検出器としては不向きである ことが分かった。