2011年度 P6

すざくによる超新星残骸G349.07+0.2の観測

八隅真人

目 次

第1章	導入と実験の目的	2
第2章	観測と解析の準備	4
2.1	観測の概要	4
2.2	解析の準備	4
第3章	解析	9
3.1	電離平衡かどうかの同定	9
	3.1.1 電子温度と電離温度の決定	9
	3.1.2 非熱的成分の検証	11
3.2	NEI モデルでのフィッティング	14
	3.2.1 電子温度の決定	14
	3.2.2 NEI モデル一成分でのフィッティング	15
	3.2.3 NEI モデル二成分でのフィッティング	17
	3.2.4 Si のアバンダンスの再検証	20
	3.2.5 解析で得られた G349.7+0.2 の性質	22
第4章	結論	24
第5章	謝辞	25

第1章 導入と実験の目的

超新星残骸 G349.7+0.2 は、天の川銀河内で発見された中でも最大級の 明るさを誇る SNR である。衛星 CHANDRA の観測によると、地球から の距離は 22kpc であり、銀河中心に近い方向にあるため、その距離から、 地球から見て銀河中心より向こう側にあることが分かる。

また、超新星爆発のエネルギーは、 1.3×10^{50} erg で、年齢は 3500 年、 X 線を出す物質の質量は 176 M_{\odot} 、X 線の光度は、 3.7×10^{37} erg/s (0.5-10.0keV)、衝撃波の速度は 710km/s となっている。(Lazendic et al. 2005)。 さらに、Frail et al. 1996 によると、OH メーザーの観測から、SNR の衝 撃波は動系方向に秒速 16km の速度でもって拡がっていて、濃い分子雲と 相互作用していることが知られている。

図 1.1: CHANDRA による X 線イメージ (等高線は分子雲を表す)

なお、Lazendicが衛星 CHANDRA のデータを解析した結果、G349.7+0.2 は低温側が主の CIE 成分 (VRAYMOND) と高温側が主の NEI 成分 (VP-SHOCK) の二つのモデルの足し合わせでスペクトルが再現されることが 分かった。

それによると、各元素がソーラーアバンダンスに固定された低温側の CIE 成分は、電子温度が 0.76 keV であって、比較的電離平衡に達するこ とのできる星間物質起源であると示されている。また、高温側の NEI 成 分は、1.44keV の電子温度を持ち、Si のアバンダンスが 2.1^{+0.2}(他の元 素はソーラーアバンダンスに元から固定されている)と高い値を示し、こ の成分は、比較的電離平衡に時間がかかる密度の薄い ejecta 起源である と示されている。

図 1.2: Lazendic によるフィット結果 (破線:NEI, 点線:CIE)

しかしながら、Lazendicのフィットした上の図を見てみると、Si付近は NEI 成分ではなく、CIE 成分がスペクトルの主を占めているために、不 定性が大きい。よって、ここで、きちんと Siのアバンダンスを検証する 必要がある。

以上より、今回の実験では、衛星すざくによって新たに得られた、G349.7+0.2 のデータを用いて、スペクトルの形を決定し、Siを含め各元素のアバンダ ンスを求めることが目的である。

第2章 観測と解析の準備

2.1 観測の概要

観測に用いたすざく衛星の CCD は XIS(X-ray Imaging Spectrometer) といい、高エネルギー側で高い検出効率を誇る表面照射型の XIS0,3 と低 エネルギー側で高い検出効率を誇る裏面照射型の XIS1 の二種類に分けら れる。今回は、XIS0 と XIS3 を観測に用いた。

XISの主な性質としては、視野が17'8×17'8、エネルギー帯域は0.2-12.0 keV、有効画素数1024×1024、1画素のサイズが24µm×24µm、エネ ルギー分解能は6 keV付近で130 eV となっている。

なお、解析に用いたデータの観測日は、2011年の9月29日から10月4日までで、露出時間は160ksである。

図 2.1: すざく衛星に搭載された XIS

2.2 解析の準備

解析前の準備として、以下のことを順に行った。解析には、解析ソフト XSPECを使用した。

1. xisrmfgen というコマンドを用いてレスポンスファイルを作り、それを

読み込むことで、生データのチャンネル数をエネルギー (keV) と対応させた。

2. 天体からの X 線のフラックスを求めるには、検出器の正確な有効面積 が必要となるため、xissimarfgen というコマンドを用いて arf ファイルを 作り解析の際に読み込んだ。

3. コマンド xisnxbgen を用いて、データベース CALDB から、検出器由 来の NXB(none Xray background) を抽出し、コマンド mathpha を用い て、生のデータから差し引いた。下図に、黒色の XIS3 の生のデータから、 赤色の NXB を差し引いたスペクトルを緑色で示す。

図 2.2: XIS3 の NXB を引いたスペクトル

4. コマンド mathpha を用いて、中心のソース領域から、周囲のバック グランド領域のデータを差し引くことで、X 線バックグラウンドを除去 した。

以下の図が、XIS3のX線イメージで、中心に明るく光っているのが SNRである。内円の中の領域がソース領域で、それより外側で、外円よ り内側の領域がバックグラウンド領域である。

また、XIS3のX線バックグラウンドを除去したスペクトルも下図に示してある。黒、赤、緑のスペクトルがそれぞれ、ソース領域、バックグラ

ウンド領域、ソース領域とバックグラウンド領域の差のスペクトルを表す。

図 2.3: XIS3 の X 線イメージ (内円:ソース領域, 外円:バックグラウンド 領域)

図 2.4: XIS3 の X 線バックグラウンドを除去したスペクトル (黒:ソース 領域,赤:バックグラウンド領域,緑:黒と赤の差分)

5. 統計数を良くするために mathpha を用いて、XIS0 と XIS3 のデータ を以下の図のように足し合わせた。

図 2.5: XIS0 と XIS3 を合わせたスペクトル (赤:XIS0, 緑:XIS3, 黒:赤と黒の和)

6. grppha というコマンドを用いてビンまとめを行った。

第3章 解析

3.1 電離平衡かどうかの同定

始めに、プラズマが電離平衡になっているかを知るために、そのために 必要な、電子温度と電離温度を求める作業を行った。

3.1.1 電子温度と電離温度の決定

まず、電子温度を求めるために、決定精度のよい鉄輝線の周りでフィットを行った。用いたモデルは、星間吸収×(制動放射モデル+Fe輝線+Ni 輝線)(wabs*(bremss+gauss+gauss))である。

なお、注目する天体と検出器の間にどれだけの量の X 線吸収物質があるかを表す wabs のパラメータ nH は、Lazendic et al. 2005 が解析した結果の $nH = 7.1 \times 10^{22}$ cm⁻² の値に固定してフィットを行った。

図 3.1: Fe の周りでのフィッティング (5.0-11.0keV)

上図が、フィッティングしたグラフである。以下に得られた結果を示す。

T_e	$1.44^{+0.07}_{-0.06} \text{ keV}$
$E({ m Fe})$	$6.617^{+0.007}_{-0.006}~{\rm keV}$
$E(\mathrm{Ni})$	$7.725^{+0.056}_{-0.061} \rm \; keV$
reduced chi-squared	0.903
null hypothesis probability	0.766

表 3.1: Feの周りでのフィット結果

次に、電離平衡モデル VAPEC を用いてシミュレーションすることで、 電子温度に対する Fe 輝線の中心エネルギーを示すグラフを作成した。そ れが以下のグラフである。

図 3.2: 電子温度に対する Fe 輝線の中心エネルギー

先のフィット結果より、電子温度は 1.44keV と分かったので、もしプラ ズマが電離平衡に達しているなら、このグラフから、Fe 輝線の中心エネ ルギーは、 $E(\text{Fe}) = 6.652^{+0.002}_{-0.002}$ keV となるはずである。しかしながら、 この値と観測値 ($E(\text{Fe}) = 6.617^{+0.007}_{-0.006}$ keV) にはずれが生じてしまってい る。

このずれの原因としては

(1) 先に Fe 輝線の周辺でフィットを行った際に、非熱的成分を含めてい

なかったために、電子温度が高く見積もられている。

(2) プラズマが電離非平衡になっている。この二つが考えられる。 以下にまず、(1) の非熱的成分の検証を行う。

3.1.2 非熱的成分の検証

Fe 輝線の周りで、非熱的成分のモデル powerlaw を含めた以下のモデル でフィットした。

モデル:星間吸収 ×(非熱的成分のフラックス+電離非平衡プラズマの フラックス) (wabs*(powerlaw+vnei))

なお、powerlawのベキとして典型的な SN1006 の値、2.73 を用い、Fe と Ni 以外の元素のアバンダンスは1 に固定した。

図 3.3: 非熱的成分を入れたフィッティング (5.0-11.0keV)

上図の緑の線が、非熱的成分のフラックスである。結果、以下の表が得られた。

nH	$7.1 \times 10^{22} \text{ cm}^{-2}$
powerlaw \mathcal{O} norm	$7.7^{+8.2}_{-7.7} \times 10^{-4} \text{ cm}^{-5}$
T_e	$1.23^{+0.16}_{-0.10} \text{ keV}$
Fe	0.54
Ni	4.59
Tau	$6.71 \times 10^{11} \text{ s/cm}^3$
vnei \mathcal{O} norm	$0.123 \ {\rm cm}^{-5}$
reduced chi-squared	0.874
null hypothesis probability	0.838

表 3.2: 非熱的成分を含めたフィットの結果

最後に、norm の値を今求めた上限値 (= 1.592×10^{-3} cm⁻⁵) が分かっ たので、その値で固定して、フィットした。用いたモデルは先程と同じ、 星間吸収 ×(非熱的成分のフラックス+電離非平衡プラズマのフラックス) (wabs*(powerlaw+vnei) である。以下がその結果である。

図 3.4: powerlaw の norm 上限値で固定したときのフィッティング (5.0-11.0keV)

nH	$7.1 \times 10^{22} \text{ cm}^{-2}$ (固定)
powerlaw \mathcal{O} norm	$1.592 \times 10^{-3} \text{ cm}^{-5}$ (固定)
T_e	1.14 keV
Fe	0.64
Ni	6.10
Tau	$6.67 \times 10^{11} \text{ s/cm}^3$
vnei \mathcal{O} norm	$0.14 {\rm ~cm^{-5}}$
reduced chi-squared	0.889
null hypothesis probability	0.806

表 3.3: powerlaw の norm 上限値で固定したときのフィッティング結果

また、このエネルギー領域においての、全体のフラックスは、2.0889×10⁻⁵photons で、powerlaw のフラックスが、0.3430×10⁻⁵photons であると分かった。この二つの比より、非熱的成分の全体における寄与は最大でも $\frac{0.3430\times10^{-5}}{2.0889\times10^{-5}} = 16.4$ %しかないことが分かる。

以上より、結局、電子温度と電離温度とのずれは、(2) プラズマが電離 非平衡になっているためであると分かった。

3.2 NEIモデルでのフィッティング

3.2.1 電子温度の決定

前節で、プラズマが電離非平衡であると分かったので、これから、NEI モデルを用いてフィッティングをしていく。

まず、温度を求めるために、決定精度のよい Fe の周り (5.0-11.0keV) で、 フィッティングした。用いたモデルは、星間吸収 ×NEI モデル (wabs*vnei) である。

なお、FeとNi以外の元素のアバンダンスは1に固定した。 結果、以下の値を得ることができた。

nH	$7.1 \times 10^{22} \text{ cm}^{-2}$ (固定)
T_e	$1.38^{+0.05}_{-0.10} \text{ keV}$
Fe	$0.48\substack{+0.04\\-0.04}$
Ni	$3.51^{+1.94}_{-1.61}$
Tau	$3.94^{+0.31}_{-0.82} \times 10^{11} \text{ s} \cdot \text{cm}^{-3}$
reduced chi-squared	0.881
null hypothesis probability	0.822

表 3.4: Feの周りの NEI モデルフィット結果

図 3.5: Feの周りでの NEI モデルフィッティング (5.0-11.0 keV)

3.2.2 NEI モデルー成分でのフィッティング

先のフィッティング結果より、電子温度が 1.38 keV であることが分かった。次は、これを全エネルギー範囲 (0.9-11.0 keV) まで広げても、スペクトルがうまく再現できるかどうかを試してみた。用いたモデルは、星間吸収×NEI モデル (wabs*vnei) である。結果、以下を得ることができた。

図 3.6: NEI モデルでのフィッティング (0.9-11.0 keV)

nH	$5.50^{+0.06}_{-0.05} \times 10^{22} \text{ cm}^{-2}$
T_e	1.38 keV(固定)
Mg	$0.29^{+0.07}_{-0.10}$
Si	$0.65_{-0.03}^{+0.02}$
S	$0.70\substack{+0.03\\-0.01}$
Ar	$0.75\substack{+0.05\\-0.05}$
Ca	$0.58\substack{+0.07\\-0.07}$
Fe	$0.45_{-0.03}^{+0.02}$
Ni	$2.01 \times 10^{-5+0.82}_{-2.01 \times 10^{-5}}$
Tau	$2.60 \times 10^{11} \text{ s} \cdot \text{cm}^{-3}$
norm	$0.111^{+0.001}_{-0.001} \ \mathrm{cm}^{-5}$
reduced chi-squared	1.911
null hypothesis probability	1.666×10^{-25}

表 3.5: NEI モデルでのフィット結果

結果、各元素のアバンダンスは1より小さくなっていることが分かった が、一自由度当りの χ^2 の値が1.91と大きいので、次は、1.38keVの温度 を持つ NEI 成分を高温側成分として、それに、電子温度をフリーパラメー タにした低温側の NEI 成分を足して、二つの NEI 成分でフィッティング を行う。

3.2.3 NEI モデル二成分でのフィッティング

用いたモデルは、星間吸収×二つの NEI 成分 (wabs*(vnei+vnei)) であ り、アバンダンスは、NEI モデル二成分で共通の値にした。 結果、以下を得ることができた。

図 3.7: NEI 二成分でのフィッテイング (0.9-11.0 keV)

nH	$6.62^{+0.18}_{-0.14} \times 10^{22} \text{ cm}^{-2}$
T_e (高温側)	1.38 keV(固定)
T_e (低温側)	$0.84^{+0.05}_{-0.10} \text{ keV}$
Mg	$1.89^{+0.30}_{-0.41}$
Si	$0.98\substack{+0.12 \\ -0.09}$
\mathbf{S}	$0.80^{+0.05}_{-0.05}$
Ar	$0.70^{+0.07}_{-0.07}$
Ca	$0.62^{+0.09}_{-0.09}$
Fe	$0.53\substack{+0.05 \\ -0.04}$
Ni	$4.28^{+1.80}_{-1.62}$
Tau(高温側)	$6.19 \times 10^{11} \text{ s} \cdot \text{cm}^{-3}$
Tau(低温側)	$3.85 \times 10^{11} \text{ s} \cdot \text{cm}^{-3}$
norm(高温側)	$0.073^{+0.007}_{-0.007} \ \mathrm{cm}^{-5}$
norm(低温側)	$0.130^{+0.031}_{-0.015} \ \mathrm{cm}^{-5}$
reduced chi-squared	1.258
null hypothesis probability	3.174×10^{-4}

表 3.6: NEI 二成分でのフィット結果

フィッティングの結果、一自由度当りの χ^2 の値は 1.91 から 1.26 に改善し、データとフィットの残差を見ても、上手くフィットできたことが確認できた。各元素のアバンダンスは以下の図に示すように、全体的に 1 よりも小さくなっていることが分かった。

図 3.8: 各元素のアバンダンス

なお、Niのアバンダンス値は 4.28 と大きな値になってしまっている。 しかしながら、これは、NEI プラズマを記述するモデル vnei に Fe の K_β 輝線が含まれていないために、それと同じくらいのエネルギーを持つ、Ni のアバンダンス値が出てきてしまっている。このことから、Niの大きな値 については信頼性に欠けるため、それを考察することはここではしない。

3.2.4 Siのアバンダンスの再検証

これまでの結果より、Siのアバンダンスを検証することを今回の実験目 的の一つに掲げていたが、その値は結局1より高い値を示すとは言えない ことが分かった。

しかしながら、正確を期するために、Lazendic et al. 2005 と同じ条件 でフィットを行い Si のアバンダンスを以下に再検証する。

Lazendic が用いたモデル星間吸収 × (CIE 成分+ NEI 成分) (wabs*(vraymond+vpshock) を用いて、さらに、Lazendic が得た、以下 の条件で固定してフィッティングを行った。

表 3.7: フィッテイングで固定した値

nH	$7.1 \times 10^{22} \text{ cm}^{-2}$
$T_e(\text{CIE})$	$0.76 \ \mathrm{keV}$
$T_e(\text{NEI})$	1.44 keV
Si	2.1
Tau	$4.5\times10^{11}~{\rm s\cdot cm^{-3}}$

フィッティングのスペクトルと得ることができた値を以下に示す。

図 3.9: Lazendic の条件下でのフィッティング (0.9-11.0keV)

表 3.8: Lazendic の条件下でのフィッティング結果

vraymond \mathcal{O} norm	$0.167 \ {\rm cm}^{-5}$
$vpshock \mathcal{O} norm$	$0.064 \ {\rm cm}^{-5}$
reduced chi-squared	3.943
null hypothesis probability	2.467×10^{-144}

スペクトルの図を見ると分かる通り、低温側でずれが大くなり、一自由 度当りの χ^2 値 (=3.943) が大きく、上手くフィットすることができなかっ た。結局、論文における Si の大きな値は、モデルの依存性によって生じ たことが分かった。

3.2.5 解析で得られた G349.7+0.2 の性質

最後に、解析で得られた、G349.7+0.2の性質を以下に記述する。なお、 SNR の形状は半径 r = 6.4 pc (地球から SNR までの距離 D(= 22 kpc) or1')の球としている。

衝撃波の温度 kT_{sh} は、低温側の成分の温度 kT_s と、 $kT_{sh} = 0.78 \times kT_s$ (1) の関係がある。また、衝撃波の速度 V_{sh} は、 kT_s と、 $V_{sh} = (16kT_{sh}/3\mu m_H)^{\frac{1}{2}}$ (2) (μ は平均原子質量で $\mu = 0.604$, m_H は水素原子の質量)の関係がある。

よって、(1)(2) より、先の解析から、 $kT_s = 0.76$ keV と求められているので、 $V_{sh} = 862$ km/s となる。

また、爆発後の年齢tは、 V_{sh} との間に、 $t = 0.4r/V_{sh}$ の関係があるので、 t = 2900 yr と求められる。

さらに、SNR の密度を n とすると、解析中に出てきた norm の値とは、 norm = $\frac{10^{-14}}{4 \pi D^2} \times n^2 V$ の関係があるので、norm の値として、NEI モデル 一成分でフィットしたときの値 (norm = 0.111 cm⁻⁵)を用いると、n = 3.17 pcc と求められる。

爆発の全エネルギー E は、 $E = 4.6 \times 10^{-25} (n_s r_{sh}^5 / t^2)$ として求められるので、上で求められた値を用いて、 $E = 1.39 \times 10^{50}$ erg となる。

さらに、SNRの光度*L*は、フラックス*f*を用いて、 $L = f \times 4\pi D^2$ と表せる。 *f*の値として、0.9-11.0keVまでのフラックスは、1.3061×10⁻¹¹ erg·s/cm² と求められたので、以上より、 $L = 7.55 \times 10^{37} \text{ erg/s} となる。$

SNR の質量 *M* は *M* = $nm_H \times 4/3\pi r^3$ = 160*M*_☉ となる。これより、 SNR の質量が、星本来が持っている質量がよりも非常に大きくなるので、 SNR のプラズマのほとんどが、かき集められた星間物質によって占めら れるていることが分かる。また、この SNR は地球から見て、銀河系中心 より離れる側にあるので、今回の研究ではその領域のアバンダンスを計測 したことになる。

第4章 結論

SNR のプラズマは電離非平衡となっていることが分かり、全体のスペクトルは NEI モデル2成分で上手く再現された。

Lazendic et al.2005 で主張される、Siの高いアバンダンスは否定された。 各元素の詳細なアバンダンスを得ることができ、それらは、銀河系の向 こう側のものであると言える。また、全体的にアバンダンスは低い値を示 すことが分かった。

第5章 謝辞

この課題研究を進めるにあたり、鶴先生、身内先生をはじめ、多くの宇 宙線研究室の方々にお世話になりました。とくに、信川さん、大西さんの お二人には、丁寧に親身になって指導して頂き、また、ときに私がする的 外れな質問にも辛抱強く答えて頂き、心から感謝しております。周りの人 から見れば、たいして進んでいないのかもしれませんが、自分一人でやっ ていたのでは、絶対にここまで進みませんでした。本当に有難うございま した。