μ-PICによる ダークマターの飛来方向測定

P6DARK班 相澤 俊博 井上 諒

宇宙マイクロ波背景放射をはじめ、 銀河の回転速度や、重カレンズなどが、 その存在の証拠として挙げられる。

超対称性理論(SUSY)で予言される WIMP(Weakly Interacting Massive Particle)が、ダークマターの有力な 候補である。ほかにアクシオン、Q ボール、ステラエルニュートリノ 等が候補に挙げられる

人工衛星WMAPが撮影した 宇宙マイクロ波背景放射

さまざまな観測によって、 宇宙の組成のうち、23%がダークマター であることがわかっている。

μ-PICで観測できるダークマター のスペクトルを計算

 \bullet \bullet \bullet

エネルギースペクトルの式							
原子核との散乱は、弾 性散乱を仮定 $\frac{dR}{dE_R}$ を縦軸に エネルギースペクトル							
$E_R = E \frac{4M_D M_N}{(M_D + M_N)^2} \frac{1 - \cos\theta}{2} \qquad \qquad$							
$dR = \frac{N_0}{A} \sigma v dn$ 速度分布は、 ボルツマン分布を仮定 $K = \frac{N_0}{A} \sigma v dn$ <i>E_Rを横軸に</i> <i>Substance</i>							
$E_{\rm p}/{\rm E}$	反跳エネルギー/WIMPの運動エネルギー	ЯША					
-R'							
E_{max}	実験室系でのWIMPの運動エネルギーの最大値	M_D/M_N	WIMP/標的原子核の質量				
E _{max} E _{min}	実験室系でのWIMPの運動エネルギーの最大値 標的原子核にエネルギーを渡すことのでき る最小エネルギー	M _D /M _N R	WIMP/標的原子核の質量 計数				
E _{max} E _{min} E ₀	実験室系でのWIMPの運動エネルギーの最大値 標的原子核にエネルギーを渡すことのでき る最小エネルギー <i>v=v</i> 0の時のWIMPの運動エネルギー	M_D/M_N R σ	WIMP/標的原子核の質量 計数 反応断面積				
E _{max} E _{min} E ₀ v	実験室系でのWIMPの運動エネルギーの最大値 標的原子核にエネルギーを渡すことのできる最小エネルギー <i>v=v</i> 0の時のWIMPの運動エネルギー WIMPの速度	M_D/M_N R σ A	WIMP/標的原子核の質量 計数 反応断面積 標的原子核の原子量				

¹⁹Fをターゲットにした時のダークマターの 予想されるエネルギースペクトル

質量100GeV/c²のダークマターの予想されるスペクトル

μ-PIC中のガスを組成して いる元素をターゲットに

反跳エネルギー [keV]

質量10GeV/c²のダークマターの予想されるスペクトル

質量1GeV/c²のダークマターの予想されるスペクトル

ここまでのまとめ

質量の小さいWIMPに対しては数keVの陽子を検出することが、WIMPの観測に有利になると考えられる。

今回、µ-PICで陽子の飛跡を検出する実験を行いました。

. . .

測定原理 内部構造

△GEMのオシロでの動作確認

→ちゃんと動くことが確認できた!

Drift t; -3217V ,Anode;470V ,使用線源¹⁰⁹Cd

スペクトル取得 Gain測定

• • •

セットアップ

波形取得說明

• Drift top;-3217V ,GEM T;-800V ,GEM B ;-300V ,Anode ;460Vで測定

Drift top;-3217V ,GEM T;-800V ,GEM B ;-300V ,Anode ;460Vの場合

Ar + C2H623.6eVエネルギーと電荷の比例定数0.0086keV/pC素電荷量1.6 × 10⁻⁷pC

を用いると、全体の増幅率は

$$\frac{1}{0.0086} \left[pC/keV \right] \times \frac{23.6 \times 10^{-3} [keV]}{1.6 \times 10^{-7} [pC]} = 1.7 \times 10^{7}$$

となる。 ASDの増幅率を160(既知)とすると、μ-PICとGEMの増幅率は

$$\frac{1.7 \times 10^7}{160} = 1.08 \times 10^5$$

よって、μ-PICとGEMの増幅率の合計は約10万倍である。

△GEMとtotal gainの関係を測定

Drift top;-3217V ,GEM B ;-300V ,Anode ;460Vで測定

GEM bottomとtotal gainの関係を測定

Drift top;-3217V ,Anode;460V,ΔGEM;450v で測定

その他の線源のスペクトルを取得

・サチった波形は除去

2Dイメージング

セットアップ

全面照射

¹³³Baの全面照射

ちゃんと動作していることを確認

¹³³Baをµ-PICの四隅に置いて、2次元イメージを書く

・視覚的な位置と、座表面上の位置が合っていることを確認

散乱角のヒストグラム作成

μ-PICの位置を確認し、X軸、Y軸をとる

平均距離での抽出前と抽出後を比較 Before After

直線に近い形のもののみが 抽出されていることがわかる

大体期待していたものに近いのだが、 0°付近のヒストグラムがおかしい。

90度

200

180

160

140

120

100

80

60[–]

40

20

0<u>□</u> -100

-50

50

100

0

µ-PICの特性? arctanで傾きを処理しているので、90 度は見えない←改善の余地あり

ガス容器から の距離;5cm

5cm以上の飛跡のみを抽出

飛跡が長い原子核は、中性子源からもらう エネルギーが大きい、つまり散乱角が小さいはずなので 飛跡が長いもののみを抽出してみた。

飛跡の長さによる抽出で明らかに改善されている。 観測したい物質の反跳エネルギーに応じて 飛跡の長さで抽出することは有効なようだ。

45度

200

180

160

140

120

100

80

60

40

20

0<u>⊟</u> -100

-50

0

50

-50

0

50

100

0<u>⊔</u> -100

100

できたこと

✓ µ-PICの基本的な性能評価

- (大まかなGainの評価、波形取得、スペクトル取得)
- ✓ GEMの交換という貴重な体験

✓ 2Dイメージング

✓ µ-PICによる中性子の飛来方向測定

時間があればやりたかったこと

- □ 中性子線源とガス容器の距離と方向測定精度の関係
- □ 3Dトラッキング
- ロ中性子に反跳されたプロトンのエネルギー測定
- □ 0度、90度付近での角度分布の対処

去年度の栗本さん、松岡さんの班による 2Dイメージング

取り出した旧GEM

2D imaging

去年度の栗本さん、松岡さんの班によるµ-PICの位置の調査

件数をかなり多くして計測してみた -45度

飛跡の距離による抽出済み きれいだけど、時間の関係で他の角度は計測できず…

プロトンのエネルギーとアルゴン中の飛跡の長さの関係

lon	dE/dx	dE/dx	Projected	Longitudina	Lateral
Energy	Elec.	Nuclear	Range	Straggling	Straggling
1.00 MeV	1.491E-01	1.040E-04	24.37 mm	1.24 mm	1.66 mm
1.10 MeV	1.413E-01	9.592E-05	28.21 mm	1.41 mm	1.89 mm
1.20 MeV	1.336E-01	8.911E-05	32.26 mm	1.58 mm	2.13 mm
1.30 MeV	1.270E-01	8.326E-05	36.54 mm	1.76 mm	2.38 mm
1.40 MeV	1.213E-01	7.818E-05	41.02 mm	1.93 mm	2.64 mm
1.50 MeV	1.161E-01	7.372E-05	45.72 mm	2.11 mm	2.90 mm
1.60 MeV	1.114E-01	6.977E-05	50.62 mm	2.29 mm	3.18 mm
1.70 MeV	1.071E-01	6.624E-05	55.72 mm	2.47 mm	3.47 mm
1.80 MeV	1.032E-01	6.308E-05	61.02 mm	2.66 mm	3.77 mm
2.00 MeV	9.631E-02	5.763E-05	72.21 mm	3.23 mm	4.39 mm
2.25 MeV	8.904E-02	5.208E-05	87.27 mm	4.04 mm	5.22 mm
2.50 MeV	8.294E-02	4.756E-05	103.49 mm	4.82 mm	6.11 mm
2.75 MeV	7.772E-02	4.380E-05	120.87 mm	5.60 mm	7.04 mm
3.00 MeV	7.320E-02	4.062E-05	139.36 mm	6.37 mm	8.03 mm

平均距離0.2mm以下のみ抽出した ヒストグラム

飛跡の距離による抽出が有効であることがわかる。

おわり

予備スライド . . .

<u>エネルギースペクトルの式</u>						
原子相性散乱	该との散乱は、弾 乱を仮定	L	ニネルギースペクトル			
$E_R =$	$= E \frac{4M_D M_N}{(M_D + M_N)^2} \frac{1 - \cos\theta}{2}$ = rとおく = $\frac{N_0}{A} \sigma v dn$ 速度分布は、 ボルツマン分布を仮定 = $R_0 \frac{k_0}{k} \frac{1}{2\pi v_0^4} \int v f(v, v_E) d^3 v$	$\frac{d}{dH}$	$\frac{R}{E_R} = \int_{E_{min}}^{E_{max}} \frac{1}{Er} dR(E)$ $= \int_{v_{min}}^{v_{max}} \frac{v_0^2}{v^2} dR(v)$ $= \frac{R_0}{E_0 r} \frac{k_0}{k} \int_{v_{min}}^{v_{max}} \frac{1}{v} f(v, v_E) d^3 v$ $= \frac{R_0}{E_0 r} e^{-E_R/E_0 r}$			
R	係数率	v_E	検出器とWIMPの相対速度			
E_R/E	反跳エネルギー/WIMPの運動エネルギー	M_D/M_N	WIMP/標的原子核の質量			
E_{max}	実験室系でのWIMPの運動エネルギーの最大値	k	規格化定数			
E _{min}	標的原子核にエネルギーを渡すことのできる 最小エネルギー	σ	反応断面積			
E_0	v=v0の時のWIMPの運動エネルギー	Α	標的原子核の原子量			
${\mathcal V}$	WIMPの速度	N ₀	アボガドロ数			

v₀ WIMPの中心速度

FADCの 電圧 較正

それぞれの線源のスペクトルを取得

Drift top;-3217V ,GEM T;-760V ,GEM B ;-300V ,Anode ;460Vで測定

キャリブレーション

Drift top;-3217V ,GEM T;-760V ,GEM B ;-300V ,Anode ;460Vで測定

Drift top;-3217V ,GEM T;-760V ,GEM B ;-300V ,Anode ;460Vの場合

 $Ar + C_2 H_6$ のW値 エネルギーと電荷の比例定数 素電荷量 23.6eV 0.047keV/pC 1.6×10^{-7} pC

を用いると、全体の増幅率は

$$\frac{1}{0.047} [pC/keV] \times \frac{23.6 \times 10^{-3} [keV]}{1.6 \times 10^{-7} [pC]} = 3.14 \times 10^{6}$$

となる。

ASDの増幅率を160(既知)とすると、µ-PICとGEMの増幅率は

$$\frac{3.14 \times 10^6}{160} = 1.96 \times 10^4$$

よって、μ-PICとGEMの増幅率の合計は約20000倍である。

キャリブレーション

Drift top;-3217V ,GEM T;-800V ,GEM B ;-300V ,Anode ;460Vで測定