MPPCアレイによる放射線測定

2009年度P6シンチ班 青野正裕&橋本暁弘 2010年3月8日

目次

- 1. Introduction
- 2. 検出器の原理
- 3. 実験方法
- 4. データ取得と解析
- 5. イメージング
- 6. まとめ
- 7. Appendix

Introduction 電子飛跡検出型コンプトンカメラ

<u>使用用途</u> ガンマ線天体観測用カメラ:気球や衛星に搭載して観測 医療用ガンマ線カメラ:ガンの発見または放射線治療時の治療モニター

位置感度型シンチレーションカメラ

8500アノード間隔 = GSOピクセルサイズ

H8500での結果と問題点

今後、コンプトンカメラの大型化・気球搭載をしてゆく上での問題点

MPPC

- MPPC(Multi Pixel Photon Counter)について
 - 受光面にAPD(Avalanche Photon Diode)が沢山並ん だもの
 - シンチレーターと組み合わせることでガンマ線の検出が できる
 - 同じく光検出器であるPMT(Photo Multiplier Tube)との比 較
 - 低バイアス電圧(<100v)で動作(PMT:1000v以上)

6.5mm

3mm

MP

- 磁場内でも使用可能(PMT:使用不可)
- 安価になる可能性
- 同程度のゲイン~10^6

- APD (Avalanche Photo <u>Diode</u>)
 - Avalanche 増幅

可視光入射① → *電子・正孔対 の生成②* → *電場により* 加速され、他の *束縛電子と* 激しく衝突③ → *なだれ増幅*④

MPPCの構造

- 単一の光子が入射したAPDの数から総光子数がわかる

検出効率(PDE: Photon Detection Efficiency)

- 入射したフォトンのうち何%を検出できるかを示す特性
- 検出効率 = 量子効率 × 開口率 × 励起確率

シンチレーター

- ガンマ線が通過すると可視光を出す

• MPPCでガンマ線を検出するために必要

	密度 (g / cm ³)	蛍光減 衰時間 (ns)	最大発 光波長 (nm)	エネルギー 分解能(%) *(FWHM @662keV)	Light output (/ MeV)	潮解性
Nal (Tl)	3.67	230	415	6-7	39,000	強
GSO (Ce)	7.13	30 - 60	440	8-9	9,000	なし
LaBr₃ (Ce)	5.29	20	360	3	63,000 GSOの7倍	非常に 強

↑ *PMT測定

MPPCの最大感度は約440nm

先行研究(2008P6)

Active area

3. 0×3. 0

0.33

素子の数は1個 ⇒位置分解能はない

MPPCアレイとは?

- 3mm×3mmの Single MPPC を複数個並べたもの
 - 受光面を広くできる
 - シンチレーターと効率よくカップリング
- 2×2chタイプ(浜松ホトニクス社製S10985シリーズ)
 - 3mm×3mmの Single MPPC を正方形状に4つ配置
 - モノリシック構造
 - 本実験ではS10985-025Cを使用

今年の目的

セットアップ

MPPCアレイとシンチレーター

MPPCアレイ(左)と6mmGSO *6mmGSOの周りにはテフロンテープ (厚さ0.1mmを2回巻)

MPPCアレイ(左)と $6mmLaBr_3$

MPPCアレイとシンチレーターの間に オプティカルグリス(OKEN6262A)を 塗ってから接着 (屈折率の違いによる反射・散乱を防ぐ)

読み出し回路

生信号

生信号(プリアンプに通す前の信号)をオシロ
スコープで見た図

例:¹³³ Ba+LaBr₃

ノイズ対策の強化

- シールド線の長さを短くした
- アルミ箱に入れた

- 電磁シールド

シンチレータによる分解能の比較@662keV

シンチレータによる分解能の比較@356keV

イメージング

シンチレーターもアレイ化 ⇒ガンマ線がどこに入った かがわかる

各chに来たガンマ線の スペクトルを別々に取得可能

GSOアレイのセットアップ

3mm角GSOをテフロンテープで仕切る

反射材はテフロンテープ

データ解析その1(最大値法)

100000行×4列のADCデータ

Max{1ch, 2ch, 3ch, 4ch}=Nch (N=1,2,3,4) ⇒Nch成分を+1

つまり各chで最大だった回数を数えるということ すべてのchが等しいとき(すべて0の場合)は無視 する

最大値法の解析結果(4chのスペクトル)

データ解析その2(重心法)

- 例:100000カウントのデータを取得した場合
- →100000行×4列のADCデータ
- 列数はchの数
- 各chのADCの値(1ch, 2ch, 3ch, 4ch)に対して 重心座標(X, Y)を次のように定義する y↑

ch1 ch2

ch3 ch4

$$X = \frac{ch1 - ch2 + ch3 - ch4}{ch1 + ch2 + ch3 + ch4}$$
$$Y = \frac{ch1 + ch2 - ch3 - ch4}{ch1 + ch2 + ch3 + ch4}$$

重心法の解析結果(2次元ヒストグラム)

射影図

重心法の解析結果(4chのスペクトル)

まとめ

•2×2MPPCアレイを使って分解能を測定 LaBr₃:7.8±0.1%@662keV(去年は8.6%) GSO:14.6±1.1%@662keV(去年は3mm角で18

・再構成イメージが作れた

課題:MPPCアレイとGSOアレイのアライメントを精密に やればより詳しい位置情報が検出できるかもしれない

Appendix

昨年のP6の実験

Gain/こ温度依存性がある

Appendix

