X線CCD新イベント抽出法の 「すざく」データへの適用

河手香織·蔵本哲也 (松本班)

目次

■原理 □検出器 □イベント抽出法 □天体データ ■ Fitting法の適用 □X線判定条件の決定 □解析結果 課題と展望

前面照射型(FI)と裏面照射型(BI)

表面照射型 (Frontside Illuminated; FI) 裏面照射型 (Backside Illuminated; BI)

XIS (X-ray Imaging Spectrometer) すざく衛星に搭載されているX線CCDカメラ (XIS-0,2,3・・FI, XIS-1・・BI)

視野

17.8'×17.8'
エネルギー帯域

0.2~12keV

有効画数

1024×1024
1画素のサイズ
24μm×24μm

較正用線源

XISには、カメラ毎に較正用線源が取り付けられている。 ■⁵⁵Fe

□ Mn - Kα : 5.9 keV

 \Box Mn - K β : 6.5 keV

Grade法

スプリット閾値を超えたピクセルの分布パターンによって X線か否かを判定 X線イベント

Grade 0 = perfect single		Grade 4 = right single-sided split + detouched corners	
Grade 1 = single + detouched corners		Grade 5 = single-sided split with touched corners	
Grade 2 = vertical single-sided split + detouched corners		Grade 6 = L-shape or square-shape + detouched corners	
Grade 3 = left single-sided split + detouched corners		Grade 7	その他
	0 L I .I		

■中心ピクセル
 ■PHがスプリット閾値以上のピクセル(波高計算に用いる。)
 ■PHがスプリット閾値以上のピクセル(波高計算に用いない。)

Fitting法 直接的に電子雲の広がりを測定 ・対称Gaussian : gauss (x,y) = a × exp(- (x - b)² + (y - c)²)/2d²) ・電子雲の広がり: 分散 ・エネルギー : 合計波高値

Fitting法で期待されること

- 5×5ピクセルで評価できる。
- Grade法ではスプリット閾値を経験的に決めるしかないが、Fitting法では直接的に電子雲を評価できる。
- ・エネルギー依存性を考慮できる。
- Grade法で除去されやすい 高エネルギーの広がったX 線を拾う。

- ・地上実験では検出効率が数パーセント上がることが確かめられている。
 - 修士論文 村上弘志 (1999) 河野誠 (2001) 山口弘悦 (2005)

・天体データにFitting法を適用してみる。

今回利用した天体データ(1) E0102-72

■ 座標

RA: 15.9884 deg
DEC: - 72.0403 deg
観測時間
4.1598×10³sec
確定されている輝線
Ov IK α線 (0.57keV)
Ov K α線 (0.65keV)

今回利用した天体データ(2) GC SOUTH

■ 座標

RA: 266.5016 deg
DEC: - 29.1694 deg
観測時間

1.2958×10⁵ sec

確定されている輝線

Sxv Kα線 (2.45keV)
Arxvi Kα線 (3.13keV)

Fitting法の 適用

解析の手順

- 1. 天体データにフィッティング法を適用する。
- 2. 較正用線源などのX線による 電子雲の広がり求め、X線判定条件を決定する。
- 3. X線イベントを抽出し、スペクトルを作る。
- 4. イベント増加率とエネルギー分解能を計算し、 Grade法と比較する。

Fitting法におけるX線判定条件

 Fitting法では、Gaussianの分散の大きさで X線か否かを判定。

→ X線による電子雲の広がりはどの程度か?

エネルギーによって、広がりはかわってくるはず。

→ エネルギー依存性も考慮。
 [FI: 高エネルギーで広がりが大きい。]
 [BI: 低エネルギーで広がりが大きい。]

FIのX線判定条件

FIのX線判定条件

FIのX線判定条件

GC SOUTHのFI型のスペクトル

GC SOUTHのBI型のスペクトル

Count

とめ(Grade法との比較)

イベント検出数はFI型、BI型ともに がる。
 1~ keVでは検出数が数%増加している。
 高エネルギー どイベント増加率が大きい。

Grade法と りかわらないエネルギー分解能がられる。
 FI型の低エネルギー で分解能が ている。

課題と展望

Fitting法の課題(原) ・ に広がっているイベントを て れない。

- 宇宙線 によるバックグラウンド
- 数のX線が入射

Fitting法の課題(対

非対称なGaussianでフィットする。

5×5のピクセルでは非対称なGaussianをフィットさるのはしい。

来的にピクセルのサイズが さくなれ Fitting 法は有効で る。

以、おけ。

X線判定条件の決め (

X線判定条件の決め

GC SOUTH (FI)

X線判定条件の決め

E0102-72 (FI)

X線判定条件の決め (

X線判定条件の決め (

X線判定条件の決め

E0102-72 (BI)

GC SOUTH BI型

	6.5keV	5.9keV	3.13keV	2.45keV	
Grade法	. 21%	2. 2%	2.2 %	3. %	
Fitting法	5. 02%	2. 2%	3.0 %	3. 5%	

E0102 BI型

	6.5keV	5.9keV	0. 5keV	0.5 keV
Grade法	2. 29%	2.33%	. %	10. 1%
Fitting法	2.3 %	2.31%	. 59%	9. 0%

GC SOUTH FI型

	6.5keV		5.9keV		3.13keV		2.45keV		
Grade法	-	2%	2.		%	2.	%	3.	%
Fitting法	5.	0%	2.	9	%	3.	1%	3.	5%

E0102 FI型

	6.5keV	5.9keV	0. 5keV	0.5 keV
Grade法	2. 31%	2.3 %	. 0 %	. 3%
Fitting法	2. 29%	2.3 %	. 20%	20. 5%

GC SOUTHのBI型のスペクトル

GC SOUTHのFI型のスペクトル

