

MeVグループ構成

スタッフ
 教授:谷森 達
 助教:高田淳史

▶ PD:水村,園田

▶ 学生

博士課程:竹村,吉川,中村

Broad band SN2014J spectrum and the model (day 75)

Ia型超新星爆発の爆発機構 元素合成は Ia (⁵⁶Ni ~0.6M_☉) が主体らしいが、爆発機構さえ理解が不十分

Iaの爆発機構: thermonuclear explosion W.D. or Double W.D. merger

SD SD DD (Single Degenerate: SD) (Double Degenerate: DD) SN2014J 3.53Mpc -> 40年に1度! SN2014J and canonical models

$$M_{Ni}, M_{Ejecta}, V_e$$

 $M_{Ni} \sim 0.6 M_{Sun} \ [\pm 0.1]$
 $M_{Ejecta} \sim 1.3 M_{Sun} \ [\pm 0.7]$
 $V_e \sim 3000 \ \text{km/s} \ [\pm 1000]$

Model	M_{Ni}, M_{Sun}	M_{Ej}, M_{Sun}	E _κ , 10 ⁵¹ erg	$\Delta \chi^2$
W7 ²	0.59	1.38	1.24	54.4
DDT1p1	0.54	1.36	1.29	52.5
DD4 ³⁰	0.61	1.39	1.24	52.0
DDT1p4	0.66	1.36	1.35	51.9
3PAR, best-fitting	0.56	1.20	1.3	50.5
3PAR, fiducial	0.70	1.38	1.3	49.3
DDT1p4halo	0.62	1.55	1.3	49.1
HED6 ³⁰	0.26	0.77	0.72	38.2
DETO ²⁹	1.16	1.38	1.44	12.1

SNの起源・元素合成には系統的研究が必要!! ~100個のSNの検出??

Even for the closest SN Ia (~3.5 Mpc) in the last 40 years, current large satellite suffers huge background.

R. Diehl+, 2015, A&A, 574, A72

Time past explosion [days]

Time past explosion [days]

MeVガンマ線領域での大問題

1. イメージング(撮像)が難しい

2. 大量のバックグラウンド

次世代への要求
 広いエネルギー帯域

 ⇒ 放射機構の解明
 大きな視野
 ⇒ MeV天体の探索
 強力な雑音除去能力
 ⇒ 高い検出感度

ガンマ線を見る

放射性同位体・原子核の脱励起・粒子の崩壊 対消滅・制動放射・シンクロトロン放射 逆コンプトン散乱 …etc

観測対象の スペクトルだけが見たい

軟ガンマ線にあったイメージング方法が必要

Coded mask

Event毎には 方向の情報がない Compton imaging

Event毎には 1角のみ方向情報がある

到来方向を得るには情報が足らない⇒ 統計的手法で方向分布を推測

New imaging

Event毎に 2角の方向情報を得る

観測領域に被る
 BGだけ考えれば良い
 ⇒ 大幅にSN比を改善

SMILE-2+ ETCC

SMILE-2+ ETCC

Check of gamma-ray imaging

Calibration at Alice Springs

放球!!

ガンマ線強度の残留大気圧依存性

Emission from galactic center region

There is a high probability that SMILE-2+ detected the emission from G.C. region.

将来計画の予想検出感度

次期計画へ

検出感度を向上させて科学観測へ ⇒ @ Alice Springs : e[±]の銀河面分布・Cen A・NGC4945他 @ Fort Sumner : Cyg X-1 / Crabの偏光観測

有効面積を >10 倍、角度分解能2~3 倍改善していく為に...

将来への要素開発: MPPC+シンチ回路

シンチレータ

現在: GSO + PMT (浜松H8500)

- エネルギー分解能 11~12% @ 662 keV
- ~1 kV, ~150 μA = ~0.15W
- HV ONから数時間はgainに大きな不定性

今後の予定

SMILE-3

設計•開発

ハードウェア改良

TGV μ-PIC, MPPC-HA, DAQ, gas study, ...

▶解析

SMILE-2+の解析 解析方法そのものの検討

シミュレーション
 SMILE-2+の観測・BGシミュレーション
 SMILE-3の設計・観測予測

シミュレーションからモノづくりまで。 なんでもやれます。

Thank you for your attention! http://www-cr.scphys.kyoto-u.ac.jp

コンプトンイメージング法の現状2

- ➤ 液体Xe-TPC
 - ⇒ 有効面積をかせぐ
- > VETOなし
- ▶ 設計有効面積:~20 cm²
 - ⇒ 実現できたのは~2 cm^2
- > 39 km, 5h
 - ⇒ Crab検出せず

94) COST (NCT) M. S. Bandstra+, ApJ (2011)

➤ Ge検出器
→ 角度分解能向上

- > VETO : BGO
- ▶ 有効面積:~8 cm²
- ➤ Crab観測
- ▶ 南半球周回気球で数天体観測

様々なアプローチが試みられているが大きな進展はない

COSI 2016年に46日間の気球飛翔実験

46日間

Energy [keV]

