

X線天文の現在と未来 満田和久

宇宙航空研究開発機構・宇宙科学研究本部

K.Mitsuda

AXA

K.Mitsuda

X線天文学がもたらした3つの驚き:その1

□ 質量降着の概念:天体のエネルギー源の重要な形態

K.Mitsuda

14XA

X徽强度

K.Mitsuda

日本のスペース天文学の現状と展望 2009年6月20日 京都テルサ

質量降着: 活動銀河核

0515

Spectroscopy

Ariel V

K.Mitsuda

14XA

esas

高温物質は宇宙の主要な構成要素 現在の宇宙=熱い宇宙

K.Mitsuda

JAXA

日本のスペース天文学の現状と展望 2009年6月20日 京都テルサ

esas

□ およそあらゆる天体がX線を放射する □ 恒星、原始星、HII領域、、、

0.1 - 2.4 keV (ROSAT)

3 - 20 keV (RXTE)

8

Galactic ongitude

Einsten

K.Mitsuda

14XA

Physics of scotch tape

1515

11

Physics of scotch tape

esas

11

Scotch tapes as standard candles

1515

Scotch tapes as standard candles

1515

Scotch tapes as standard candles

JAXA

Clusters of galaxies

- □ 重力的に束縛された系としては、宇宙最大の天体
 - □ 重力:宇宙の大構造のノード
 - □ z<2の宇宙の大構造形成史
 - Baryonic matter interactions:高エネルギー実験室
 - □ 高温ICM: thermal energy, kinetic energy
 - □ 高エネルギー電子、宇宙線(陽子)、磁場
 - □ Dark matter annihilation (?)

Clusters of galaxies as a probe of structure formation of the universe

JAXA

1515

AX4

Clusters of galaxies as the largest laboratory for high energy astrophysics

- 重力:Dark matterが支配。
- Baryonic matter: 高エネルギー粒子(AGN、accretion shock, merger shock、dark matter annihilation(?)) や磁場を含めた複雑な系
 - □ 宇宙最大の高エネルギー物理の Zoo

Crude, but maybe present best estimate

Energy density ∝ **Pressure**

K.Mitsuda

esas

Energy density estimation (1)

ICM thermal energy

 $\bar{n} = 500 \rho_{\rm cr} \Omega_b / (m_{\rm H} \mu) = 1.1 \times 10^{-4} \text{ cm}^{-3}$ kT = 8 keV

ICM kinetic energy

K.Mitsuda

JAXA

Energy density estimation (2)

Energy density estimation (3)

Cosmic rays

Colafrancesco & Blasi 1998

Diffusion time
$$\tau \sim 7 \times 10^{21} \text{ s} \left(\frac{r}{1 \text{ Mpc}}\right)^2 \left(\frac{E}{1 \text{ eV}}\right)^{-1/3} \left(\frac{B}{1 \mu \text{G}}\right)^{1/3}$$

<4 x 10⁵ GeV のproton は宇宙年齢以上閉じ込められる CR sources

 $L_{\rm CR} = L_{\rm galaxy} + L_{\rm AGN} + L_{\rm shock}$ ~ $10^{42} \, {\rm erg/s}$ ~ $10^{44} \, {\rm erg/s}$ ~ $10^{44} \, {\rm erg/s}$ cluster内でのlossは Lcr に比べて小さい

$$E_{\rm CR} \sim L_{\rm CR} t_{\rm age}/2 \sim 1.4 \times 10^{73} \ {\rm eV}$$

K.Mitsuda

4XA

Crude, but maybe present best estimate

Energy density ∝ **Pressure**

K.Mitsuda


```
Energy density \propto Pressure
```

K.Mitsuda

Energy density \propto Pressure

K.Mitsuda

AXA

ISAS

121

Japanese

New exploration X-ray Telescope ASTRO-H

Main futures: Hard X-ray imaging Spectroscopy (2-80 keV) Soft X-ray high-resolution Spectroscopy (FWHM ≤ 7eV)

> Main objectives: Evolution of super massive black holes Evolution of clusters of galaxies Accelerations in clusters and SNRs Vicinity of black holes

Astro-Hへの期待

- □ Kinetic energy of ICM
 - □ Direct measurement by SXS (µ calorimeter)
- □ Cosmic ray

AXA

K.Mitsuda

- □ A window in EUV to soft X-ray
- □ Soft X-ray excessはあるのか、ないのか?
- Emission lines (WHIM)なのか、continuum (IC of CR secondary e⁺e⁻) なのか?
 µ calorimeterの分解能と
- □ Combined analysis with Fermi
- □ Magnetic field
 - □ Hard X-ray excess by HXI

> 銀河団 Energy budget の理解

宇宙の大構造進化とバリオン物質史の理解へ

日本のスペース天文学の現状と展望 2009年6月20日 京都テルサ

< 0.3 keVの感度が重要

Baryonic matter in present universe

AXA

K.Mitsuda

Piro+ 2009 (simulation by Branchini)

K.Mitsuda

Future high-resolution spectroscopy

14XA

Future high-resolution spectroscopy

JAXA

From dark age to present

EDGE/Xenia

515

31

Evolution of the Universe

14XA

K.Mitsuda from the Edge proposal, also in Piro et al. 2009 (Figure compiled by Y. Takei)

まとめ

□ 過去から現在

□ X線天文学がもたらした3つの驚き

□ 質量降着をエネルギー源とする天体

□ バリオン物質の多数を占める高温物質

- □ ほとんど全ての天体がX線源
- □ 現在から未来
 - □ 動物学と基礎科学

□ 天文学による基礎科学のためには、動物学が必須

□ 宇宙最大の高エネルギー実験室

□ 銀河団:バリオン物質のzoo

- □ その向こう側と手前側: Dark age から現在
 - □ 最初の天体形成期の環境、現在の宇宙の3D地図

K.Mitsuda