LTCC-GEMの中性子検出器への応用

東京都立産業技術研究センター 小宮一毅 武内陽子 高エネルギー加速器研究機構 宇野彰二 亦称大学 小池貴久

2018 All rights reserved.

1. はじめに

2. 冷中性子でのイメージング

3. 高速中性子のイメージング

4. まとめ

5. 今後の課題

低温焼結セラミックスを絶縁層に用いたGEM(LTCC-GEM)

LTCC-GEM (100 mmサイズ)

- ・最大増幅率 1万倍~@dV_{GEM}=750 V
- エネルギー分解能 ~25%@dV_{GEM}=700 V
- 放電 10000回以上でも壊れない
- ・リジットでフレームへの貼り付け不要
- ・水素を含有していない(中性子に有利?)

<u>_TCC-GEMを中性子検出器に応用できないか?</u>

(2) LTCCは放電に強い

		従来		今回
		フィルムGEM		セラミックスGEM
		polyimide	LCP	LTCC
材料				CaO Si ₂ + Al ₂ O <u>B₂O</u> ₃
耐電圧	kV∙mm ⁻¹	22	26-40	> 15
耐アーク放電 試験	Sec	135	186	> 300
京園	°C	< 800	< 450	> 800

・無機材料なので放電に強い

※チャンバー/エレキは KEK宇野さんのもの

2. 冷中性子でのイメージング

2. 冷中性子イメージング 中性子ビームテスト ・中性子ビーム源:理化学研究所 RANS パルス中性子:発生中性子エネルギー keV~冷 平均電流 70 μA 周期 50 Hz 中性子発生ターゲット ベリリウム GEMチェンバ+エレキ 冷中性子減速材 メシチレン ビームサイズ 250 mm × 250 mm 加速中性子源 •GEM設定: ガス Ar/CO₂=7/3 コリメータ ×2台 (RANS) dV_{GFM}= 430 V (Gain 約300倍) (150cm+145cm) 1 エレキ部 チェンバ部 GEMチェンバ+エレキ 実験風景 (2018/6/14~2018/6/15)

7

冷中性子イメージング 2.

也方独立行政法人

東京都立産業技術研究センター

TOF法で冷中性子まで エネルギー分別が出来ることを確認

2. 冷中性子イメージング

TOFスペクトル

鉄サンプル

冷中性子領域でイメージング化に成功! 鉄のブラッグエッジを観察 イメージング化に成功

鉄サンプルのイメージング

2. 冷中性子イメージング

LTCC-GEM特有の問題点

セラミックスサンプル

・1mm厚のLTCC板は冷中性子を遮蔽

(原因) LTCCは焼結温度を低温化するために ホウ珪酸ガラスを含有

・HTCC(アルミナ)は中性子を阻害しない

3. 高速中性子のイメージング

<u>3.高速中性子の検出</u>

B.Esposito $\hat{\boldsymbol{b}}$

・NIM A 741 (2014) 196-204 Cathodeに、ポリエチレン(PE)にAIを蒸着したフィルムを用い高速中性子を補足

12

3. 高速中性子の検出

中性子ビームテスト

- 中性子ビーム源:神戸大学 海事科学部 粒子ビーム工学研究室
- 中性子: M15ライン 発生中性子エネルギー 1.5~ 3.0 Mevくらい 平均電流 16 µA 周期 DC 中性子発生ターゲット ベリリウム ガス Ar/CO₂=7/3

•GEM設定:

実験風景 (2018/8/27~2018/8/29)

<u>3.高速中性子の検出</u>

アクリル2mm厚を8枚重ね

取得した高速中性子画像

・高速中性子のイメージング化に成功(したかも・・・)

(画像が汚い原因)
 ガンマ線を拾っている?
 電離ガスの違い??
 論文だとAr/CO₂/CF₄=45/15/40
 CF₄はプロトンの飛程抑制目的に導入?

4. まとめ

- 冷中性子を利用したイメージングが出来た!
- ・HTCC(アルミナ)基板であれば、中性子に影響しない
- ・高速中性子をイメージングできた!?(プロトン変換)

<u>5. 今後の課題</u>

- LTCC-GEMだと冷中性子を遮蔽
 (予想原因) LTCCに含まれる微量のホウ珪酸ガラス
 (対策) HTCC(アルミナ)にする
- 高速中性子の画像が不明瞭の原因
 (予想原因) プロトンの飛程距離が長い?
 (対策) 飛程抑制ガスの追加

<u>6. 謝辞</u>

本研究を行うにあたり、多くの方々に御指導と 御協力を頂き、 心より御礼申し上げます。

- ・LTCC-GEMの作製・サンプル提供を頂いた、 平井精密工業 河野様、花谷様、瀬口様をはじめとしたスタッフの皆様
- 本研究に対しアドバイスとRANSの使用の際に指導してくださった、
 理化学研究所 竹谷先生、大竹先生をはじめとしたスタッフの皆様
- RANS・神戸大学でのテストを手伝って頂いた、
 bee beans technologies 岩瀬様、宮本様
- ・神戸大学でのテストを手伝って頂いた、 神戸大学 越智先生、池谷先生 大阪大学 吉田さん、中沢さん

