The µPIC-based neutron imaging detector (µNID) for energy-resolved neutron imaging at J-PARC

Joe Parker CROSS

第15回MPGD研究会 @京大 14 December 2018

RADEN and µNID development members

JAEA/J-PARC Center

Takenao Shinohara Kenichi Oikawa (BL10) Takeshi Nakatani Kosuke Hiroi

Joe Parker (µNID Lead Developer)

Tetsuya Kai Masahide Harada (BL10) Mariko Sagawa Yuhua Su

CROSS

Yoshiaki Kiyanagi

Hirotoshi Hayashida

Kyoto University (µNID development)

Nagoya University

Toru Tanimori Taito Takemura Ken Onozaka Atsushi Takada Tomoyuki Taniguchi Mitsuru Abe

Yoshihiro Matsumoto

Outline

- (Brief) Intro to energy-resolved neutron imaging
- \bullet Current status of the μNID at RADEN
- Ongoing development
 - 215µm pitch MEMS µPIC
 - µNID with boron converter

Energy-resolved neutron imaging at RADEN

Energy-dependent neutron transmission

- Energy-dependence → quantitative information on macroscopic distribution of microscopic quantities
- Pulsed neutrons → wide energy range, accurate energy determination by time-of-flight
- Use time-resolved imaging detectors at RADEN:
 - Sub-mm spatial resolution
 - Sub-µs time resolution
 - Mcps count rate
 - Strong background rejection

µPIC-based Neutron Imaging Detector (µNID)

µPIC-based neutron imaging detector (µNID)

Neutron detection via n + ${}^{3}\text{He} \rightarrow p$ + t

Overall track length ~4 mm in gas

- Gaseous time-projection-chamber
 - CF_4 -i C_4H_{10} -³He (45:5:50) at 2 atm
 - µPIC micropattern readout
 - Compact ASIC+FPGA data
 encoder front-end
- 3-dimensional tracking of decay pattern + time-over-threshold
 - Accurate position reconstruction
 - Strong gamma rejection

µPIC-based neutron imaging detector (µNID)

µNID performance and usage at RADEN

Base performance characteristics		
Active area	10 x 10 cm ²	
Spatial resolution	0.1 mm	
Time resolution	0.25 µs	
γ -sensitivity	< 10 ⁻¹²	
Efficiency @25.3meV	26%	
Count rate capacity	8 Mcps	
Effective max count rate	> 1 Mcps	

Detector usage at RADEN (2018A)
μNID	34 days

CCD camera	20 days
Other counting-type	36 days

µNID used primarily for Bragg-edge, magnetic imaging, and phase imaging measurements at RADEN

Image of Gd test target

Fine spatial resolution using template fit to TOT distribution

µNID control software/analysis GUI

- New DAQ controller hardware and detector control software
 - Based on DAQ middleware
 - Full integration into beam line control system
 - In use since March 2018
- New browser-based UI for offline analysis
 - First update with simplified interface, better data visualization, etc.
 - In use since April 2018

Software frameworks at the MLF

IROHA2 – Experimental device control system with web-based UI (MLF)

DAQ Middleware – Detector control and data collection (KEK)

<u>µNID analysis GUI</u>

Automated measurements

- Increased rate and integrated control
 - Perform complex measurements more easily
- Computed tomography with TOF
 - Quantify effects of scattering, beam hardening, etc.
 - Combine with energyresolved imaging techniques
- Dynamic samples
 - Fold TOF info with motion/ process frequency
 - Currently limited to cyclical processes

Computed tomography

Magnetic imaging of running motor

K. Hiroi et al., J. Phys.: Conf. Series 862 (2017) 012008

Ongoing development

- 215µm pitch MEMS µPIC for improved spatial resolution
- µNID with boron converter for increased rate performance

Current and projected performance of event-type imaging detectors at RADEN

Small-pitch MEMS µPIC

Small-pitch MEMS µPIC

- Improve spatial resolution with reduced strip pitch
- Develop small-pitch µPIC
 - Manufacture using MEMS on <u>silicon substrate</u> (by DaiNippon Printing Company, Ltd.) → Thrusilicon-via (TSV) µPIC
 - Successfully produced <u>215</u> <u>µm pitch µPIC</u> (down from 400 µm)
 - Small (14 x 14 mm²) and larger area TSV µPICs (55 x 55 mm²) tested at RADEN

First test of TSV µPIC at RADEN (MPGD2016)

Gas filling used for test: P10:CF₄:He (60:30:10) @2 atm

- No signal measured on 280µm section (gain too low)
- Signal confirmed on 215µm section
- Observed gain instability

Gain instability under irradiation (MPGD2017)

10µm

4µm 15µm

- TSV µPIC gain observed to increase with neutron exposure even for 15µm SiO₂ layer
- Tried grounding Si substrate

Large-area TSV µPIC test at RADEN

- Imaging confirmed but spatial resolution not improved as expected (slightly worse than PCB µPIC)
- Gain instability under neutron exposure → improved by grounding substrate but not eliminated

- Gain stability: new MEMS µPIC with glass substrate (TGV µPIC)
- Spatial resolution: optimize gas for shorter tracks?

PRELIMINARY

MEMS µPIC with glass substrate (12/10)

Image from digital microscope

- Initial testing performed at Kyoto U. (Abe-san's talk)
- Gain stability measured at RADEN
 - Improved over silicon substrate
 - Slightly worse than PCB µPIC

PRELIMINARY

Imaging with the 215µm MEMS µPICs

215µm TSV µPIC

400µm PCB µPIC

215µm TGV µPIC

- Image quality with TGV μPIC looks good
- Resolution may be slightly improved compared to PCB µPIC

Note: measurement statistics are different for each image

PRELIMINARY

Imaging with the 215µm MEMS µPICs

215µm TSV µPIC

400µm PCB µPIC

215µm TGV µPIC

- Image quality with TGV μPIC looks good
- Resolution may be slightly improved compared to PCB µPIC

Note: measurement statistics are different for each image

µNID with boron converter

µNID with boron converter (B-µNID)

- Increase count rate capacity by reducing event size
 - ¹⁰B (α,Li) for <u>3x smaller</u>
 <u>event size</u> than ³He (p,t)
 - Trade-off in spatial resolution
- µNID with flat boron converter (for initial testing)
 - Thin, 1.2µm ¹⁰B layer \rightarrow <u>low</u> <u>efficiency</u> (3~5%)
- Need to consider ways to improve detection efficiency

Expect 20~25 Mcps count rate and 0.4 ~ 0.5 mm spatial resolution

Spatial resolution study at RADEN

- Study of spatial resolution, event size vs. gas pressure (1.2 ~ 1.6 atm)
- L/D:1000, Exposure time: 15 mins
- Spatial resolution estimated from contrast of line-pairs (MTF)
- Maximum count rate at hardware limit: <u>22 Mcps</u> @1.6 atm

Pressure (atm)	1.2	1.4	1.6
Average hits/ event	5.86	5.42	4.82
MTF @0.6mm	27%	36%	41%
Spatial resolution @10% MTF (mm)	0.50	0.48	0.45

Summary

- Standard µNID detector is in regular use at RADEN
 - Integration into RADEN control system greatly improved usability
 - Incremental improvements in spatial resolution, rate performance
- MEMS µPICs for improved resolution
 - TSV µPIC gain stability initially seemed to be improved with grounded substrate, but long-term operability may be adversely affected
 - Large-area TSV μ PIC \rightarrow image quality worse than PCB μ PIC (gain instability?)
 - TGV μ PIC \rightarrow improved gain stability, good image quality
- µNID with boron converter for increased rate
 - Proof-of-principle study completed \rightarrow confirmed peak rate of 22 Mcps and spatial resolution of 0.45 mm
 - Next: gas optimization for further reduced event size, increase efficiency of converter
 - Will make a new, dedicated Boron-µNID system for RADEN next year