GRAINE計画と2018年気球実験 高橋覚(神戸大) for GRAINE collaboration ^{愛知教育大学、ISAS/JAXA、岡山理科大学、神戸大学、名古屋大学} PI: 青木茂樹(神戸大)

GRAINE 2018, JAXA Scientific balloon @ BLS Alice Springs Australia, 6:30AM 26th April (ACST)

All-sky map by Fermi Gamma-ray Space Telescope using nine years of data collected from 2008 to 2017

Image credit: NASA/DOE/Fermi LAT Collaboration

>5000 sources (FL8Y)

原子核乾板(エマルションフィルム)

Gamma-ray

Microscopic view <u>10 μm</u>

原理的な位置精度~50nm

e+/-

e-7+

2011年度気球実験 エマルションガンマ線望遠鏡の 初めての気球実験

初めての気球実験、実現可能性の実証

2015年気球実験

放球地点 日時:5月12日午前6時03分JST 場所:アリススプリングス気球放球基地 着地地点 日時:5月12日午後8時25分JST 場所:クイーンズランド州ロングリーチの 北方約130km地点

飛翔時間 14時間22分

Flight duration: 14hour22min (11hour32min(約7倍) @36.0-37.4km) image©JAXA

ロ径面積3780cm²(約30倍) ミリ秒オーダー時間分解能(約1/10倍)

Launched, 6:33 12th May 2015 実験設計、様々な改良・準備、気球実験 オーストラリアでの気球実験体制を確立

Image©JAXA

S. Takahashi et al., PTEP 073F01 (2016); K. Ozaki et al., JINST 10 P12018 (2015)

2015年気球実験のまとめ

- 口径面積3780cm² (約30倍,新型エマルションフィルム,総面積48m²)
- フライト時間14.4hour (11.5hour@36.0-37.4km (約7倍))
- オーストラリア気球実験 scheme & flow を確立
- JAXA豪州大気球実験の先行実験としての役割を果たした
- 飛跡読み出し総面積41m² w/ HTS
- エマルションフィルムのS/N比~20倍、データサイズ~20分の1
- フィルムあたりの飛跡inefficiency~10分の1
- ・ガンマ線事象検出のためのデータリダクションロード~200分の1
- 全有効面積データ処理 口径面積2830cm² (総面積30m²)
- ガンマ線結像性能<~1.0deg cf. 角度分解能1.0deg@100MeV
- ・ 全フライト時間(6:30 20:00)にわたるタイムスタンプ
- •時間分解能9.8ミリ秒(約7倍)
- スターカメラ限界等級改善 6.1→7.5等級

2011年気球実験から大きく前進

H. Kawahara, et al., KMI 2017, https://pos.sissa.it/294/059; H. Rokujo, et al., PTEP 063H01 (2018); F. Mizutani et al., NIMA (Submitted).

2015年気球実験 Vela Pulsarからのガンマ線を有意に検出する。

2018年4月JAXA豪州気球実験

<u>有効面積・有効時間拡大およびBG低減の展望</u>

- ・スターカメラの堅牢性強化→有効時間 1.77倍
 - データストレージの冗長化、エラーからの復帰可能なシステム
- ・エマルションフィルムの安定性確保→有効面積 1.33倍

望遠鏡の総合的な性能実証を目指す

(目標結像性能: 1deg (>100MeV))

- ・製造および処理処方の最適パラメーター確立
- ・シフターセットアップの確立→有効面積x有効時間 1.33倍

•フィルム搭載条件の最適化

・シフター動作パラメータの適正化→BG 1/2倍

(実効値5倍)

2018年気球実験

Google Earth Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus

Alice

Flight duration: 17.4h (21%个). Sydney Level flight @38.1 – 35.4 km: 14.7h (28%个) Fully covered Vela pulsar in 45 deg zenith (10%个)

anokn

reac

 ✓ 望遠鏡(多段シフター、スターカメラ3台、与 圧容器)の安定運用を達成
 ✓ 回収成功(4/27 Longreach)
 ✓ 現像を無事に完了(4/29 – 5/13 @U Sydney)

GRAINE 2018, JAXA Scientific balloon @BLS Alice Springs Australia, 6:30AM 26th April (ACST)

GRAINE 2018, Flight data analysis, Timestamper, Timestamping

GRAINE 2018, Flight data analysis, Attitude monitor

GRAINE 2018, Flight data analysis, Combined

Vela パルサー 周辺 ガンマ線 到来方向分布 銀河座標

科学観測実 2018年4月, 総合性能実 Alice Springs 0.38 m ² aperture 17.3 hours flight duration 3-5 g/cm ² altitude	食ロードマップ 証 2021-,科学観測 Alice Springs 10 m ² aperture >~36 hours flight duration <~10 g/cm ² altitude	Takahashi, Aoki et al., ASR 62 (2018) 2945
Velaパルサーの検出 精密撮像、	Vela pulsar Polarization observation (<50%)	Pioneering polarization observation for high energy γ -rays
14.1177時時初5000V、 銀河面放射、Gemingaを 検出もしくは兆候を捉える 目標結像性能1deg(>100MeV)	SNR W44 (<200MeV, >200MeV) Precise spectrum measurement High resolution imaging	Studying cosmic ray sources
<u>フライトデータ解析状況</u> エクセス検出(5.2 ₀)	Galactic Center Obs. with ~arcmin resolution	Resolving GeV γ-ray excess at galactic center
 塚山かり半径約1deg(>80MeV) 今後 ▶ 統計増大、BG低減 ▶ オフセット理解 ▶ フラックス導出 	Test of fundamental symmetries be Transient sources Obs. w/ high sensitivity & high photon stats	yond the Planck scale Studying transient sources & w/ ones
	「GKPCU/伯渕探系、GeV γ-r <mark>ay</mark> Pair I	Talo抹糸→IGIVIFを利限

