NeV宇宙線の研究と NeVガンマ線との関連

信川 久実子 (奈良女子大学)

2019/9/26-27 K.K. Nobukawa

MeV宇宙線の研究意義

①宇宙線の起源解明への手がかり

◇宇宙線加速において、熱的粒子 と高エネルギー側を結びつける ミッシングリンク

◇GeV-TeV宇宙線に比べ、 拡散しにくい —> 加速現場をよりトレース

②星間物質への影響 ◇MeV宇宙線はエネルギーを 電離で失うので、星間物質の 加熱や化学進化に影響

× 陽子の数]

の2乗

og [エネルギ

MeV以下の情報はほぼ無し

2019/9/26-27 K.K. Nobukawa

X線を用いたMeV宇宙線探査

2019/9/26-27 K.K. Nobukawa

IC443(くらげ星雲) ◇分子雲と相関した 中性鉄輝線 => MeV陽子起源 ◇GeV·TeV陽子起源 のガンマ線と相関 ◇MeV宇宙線の密度 $10^{2}-10^{3} \text{ eV/cc}$

超新星残骸でのMeV宇宙線探査

KN et al. 2018 ◇10天体ほどのMiddle-aged (or old) SNRから発見 ◇いずれも分子雲と相互作用 ◇宇宙線加速の標準的なモデル(逃亡モデル)で 中性鉄輝線とガンマ線放射を同時に説明可能 (Makino, Fujita, KN, Matsumoto, Ohira 2019, KN et al. 2019)

2019/9/26-27 K.K. Nobukawa

天の川=無数の星の集まり

可視光

星以外にも広がったX線放射

2019/9/26-27 K.K. Nobukawa

第2回MeVガンマ線天文学研究会@東京大学

Millinger, 2000

MAXI/RIKEN

銀河面からMeV宇宙線起源の中性鉄輝線

◇中性鉄輝線が強い領域と 分子雲が空間的に相関 >近傍に明るいX線を出す 天体なし => 宇宙線起源 (Yamauchi, KN et al. 2016)

GeV以上での典型値より

未知の加速機構?

銀河系の中心領域は?

◇分子雲と相関 + 数年スケールの時間変動 (c.f. Koyama 2018) ◇Sgr A*の過去のフレアを分子雲が反射「X線反射星雲」 ー様な分布も存在 => MeV宇宙線が寄与している可能性

2019/9/26-27 K.K. Nobukawa

◇2000年代からH₃+ (Geballe & Oka 1996)の測定が活発化 ◇銀河中心にある中心分子雲帯 (CMZ)

- $\zeta = (2-7) \times 10^{-15} \text{ s}^{-1}$ (Oka et al. 2005)
- $\zeta = (1-11) \times 10^{-14} \text{ s}^{-1}$ (La Petit et al. 2016)
- $\zeta = 2 \times 10^{-14} \text{ s}^{-1}$ (Oka et al. 2019) $\approx 1 \text{ eV/cc} \ll \zeta \sim 10^{-17} \text{ s}^{-1}$ 低エネルギー宇宙線の密度~102-103 eV/cc

◇銀河面上

- $\zeta = (3.5^{+5.3}_{-3.0}) \times 10^{-16} \text{ s}^{-1}$ (Indriolo & McCall 2012)
 - 太陽から2 kpc以内の星間物質
- $\zeta = 1.8(^{+1.7}_{-0.9}) \times 10^{-16} \text{ s}^{-1}$ (Indriolo et al. 2015)
 - OH+、H₂O+を用いた測定。H₃+より広範囲を測定

低エネルギー宇宙線の密度 ~10 eV/cc

2019/9/26-27 K.K. Nobukawa

宇宙線衝突によるMeVガンマ線

		Diehl 2013	
energy	source process	astrophysical origin	
(MeV)		(source type)	
1.634	nuclear excitation: ²⁰ Ne	cosmic ray / ISM interactions	
1.809	radioactive decay: ²⁶ Al	massive-star and ccSN nucleosynthesis	
2.230	neutron capture by H	energetic nucleon interactions	
2.313	nuclear excitation: ^{14}N	cosmic ray / ISM interactions	
2.754	nuclear excitation: ^{24}Mg	cosmic ray / ISM interactions	
4.438	nuclear excitation: ^{12}C	cosmic ray / ISM interactions	
6.129	nuclear excitation: ^{16}O	cosmic ray / ISM interactions	

2019/9/26-27 K.K. Nobukawa

1000

100

20

COMPTELによる核ガンマ線探査

◇ COMPTELによるinner Galaxyの 観測で3-7 MeVに超過の兆候 **MeV** (Bloemen et al. 1997) Sim PSFs 1000 $-F_{\gamma} = 2 \times 10^{-4} \text{ v/s/cm}^2$ 500 - 宇宙線衝突による核ガンマ線? E Flux (10⁻⁶ - INTEGRAL SPIでは確認できず 200 (Teegarden & Watanabe 2006) 100 × ◇ Orion領域でも3-7 MeVに超過 Ω=1.46 sr പ്പ 50 $(9\sigma; Bloemen et al. 1997)$ 2 - のちに検出器バックグラウンドを 見直した結果、超過はなくなる (Bloemen et al. 1999)

2019/9/26-27 K.K. Nobukawa

4.4 MeV 核ガンマ線の強度 (c.f. Benhabiles-Mezhoud et al. 2013) $F_{\gamma} \sim 10^{-3} \times \frac{W_{cr}}{10^{3} \text{ eV/cc}} \gamma/\text{s/cm}^{2}/\text{sr}$ partial for the local structure in the local structure

輝線 1 Ms 感度				
E (keV)	FWHM (keV)	e-ASTROGAM sensitivity (ph cm ⁻² s ⁻¹)	Improvement VS SPI	
511	1.3	4.1×10^{-6}	13	
847	35	3.5×10^{-6}	66	
1157	15	3.6×10^{-6}	27	
1275	20	3.8×10^{-6}	29	
2223	20	2.1×10^{-6}	52	
4438	100	1.7×10^{-6}	65	
<u></u> 1 σ感度				

中澤さん資料 (2017.02.06)

2019/9/26-27 K.K. Nobukawa

第2回MeVガンマ線天文学研究会@東京大学

なにか見えてくる

◇実際は連続成分の評価も必要◇検出できなくても上限値は重要

核ガンマ線の強度予想

2019/9/26-27 K.K. Nobukawa

まとめ

◇MeV宇宙線は観測が困難なため、情報が非常に少ない ◇X線で、分子雲中にMeV宇宙線が衝突して出た可能性の高い 中性鉄輝線を観測

◇電離率測定も、低エネルギー宇宙線の密度が高いことを示唆

◇低エネルギー宇宙線の密度の見積もり

銀河面:10-10² eV/cc

超新星残骸:10²-10³ eV/cc

◇MeV宇宙線と分子雲の衝突で核ガンマ線が生成

• MeV宇宙線の存在は核ガンマ線の検出で決定的になる

◇核ガンマ線強度を見積もった

検出には10⁻⁶ ph/s/cm²台の感度が最低条件

第一ステップとして上限を決めることも重要

2019/9/26-27 K.K. Nobukawa