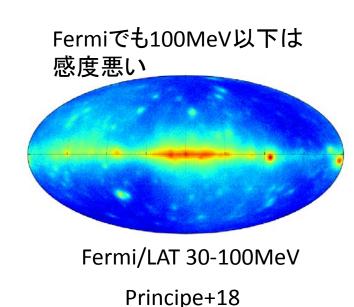
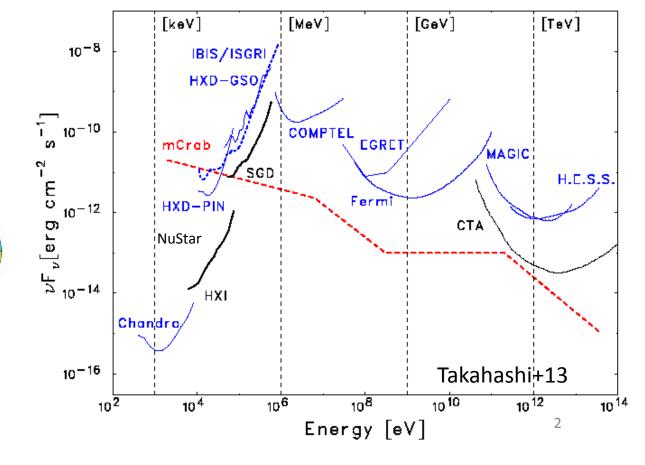
AMEGO

All-sky Medium Energy Gamm—ray Observatory

深沢泰司(広島大学)


昨今のガンマ線天文学の発展


2000年代 TeVガンマ線望遠鏡観測の本格化(天体数200に迫る)

2008年以降 フェルミ衛星によるGeVガンマ線観測の飛躍(天体数5000以上)

2020年代 CTAによるTeVガンマ線観測の発展(天体数1000以上が期待)

一方、MeVガンマ線観測は..... (数100 keV- 数10 MeV) 1990年代のCGRO衛星COMPTEL以降進展無し (天体数 約30)

AMEGO

2014年ごろ ComPairとして、提案(アメリカ) 2017年ごろ AMEGOとなる 2019年 Astro2020 APC White paper 提出

PI: Julie McEnery (GSFC/NASA)

All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe an Astro2020 White Paper

> PI: Julie E. McEnery NASA/GSFC

(AMEGO Collaboration)

arXiv190707558

https://asd.gsfc.nasa.gov/amego/

AMEGO Team – growing and open for joining

NASA/GSFC

Julie McEnery (PI)
Jeremy Perkins
Liz Hays
Judith Racusin
Dave Thompson
Alice Harding
Brad Cenko
Tonia Venters
John Mitchell
Georgia de Nolfo

U Delaware

Jamie Holder

Georgia Tech

Nepomuk Otte

UCSC

Robert Johnson David Williams

Stanford University

Nicola Omodei Igor Moskalenko Giacomo Vianello

North West University, South Africa

Zorawar Wadiasingh

NASA/GSFC/CRESST

Alex Moiseev
Regina Caputo
Dan Castro
Sara Buson
Roopesh Ojha
Elizabeth Ferrara
Chris Shrader
Amy Lien
Bindu Rani
Andy Inglis
Lucas Uhm
Eric Burns

NRL

Eric Grove
Richard Woolf
Eric Wulf
Justin Finke
Teddy Cheung
Matthew Kerr
Michael Lovellette
Alexander Chechtman

UC Berkeley

Steven Boggs Andreas Zoglauer John Tomsick

BNL

Alexey Bolotnikov

SLAC

Seth Digel Eric Charles Matthew Wood

Washington University in St Louis

Fabian Kislat Henric Krawczynski

UNH

Mark McConnell Peter Bloser

GWU

Sylvain Guiriec Oleg Kargaltsev Alexander van der Horst George Younes

Clemson University

Dieter Hartmann Marco Ajello Lih-Sin The Vaidehi S. Paliya

Los Alamos National Lab

Lisa Winter

University of Padova and INFN Padova

Riccardo Rando

NASA/MSFC

Colleen Wilson-Hodge Michelle Hui Dan Kocevski

UAH

Michael Briggs

USRA

Valerie Connaughton

osu 日本登録メン

John Beacom

UIUC 田島宏康(名大)

Brian Fields 中澤知洋(名大)
Xilu Wang 深沢泰司(広大)

UNIV 水野恒史(広大)

Bing Zhang 高橋弘充(広大)

Argonne National Lab 大野雅功(広大) Jessica Metcalfe 突系体(言士)

窪秀俊(京大)

University of MD, College Park

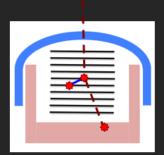
Peter Shawhan

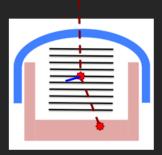
University of MD, Baltimore County

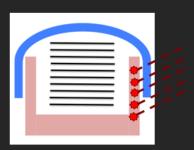
Markos Georganopoulos Eileen Meyer

Rice University

AMEGO Instrument Summary

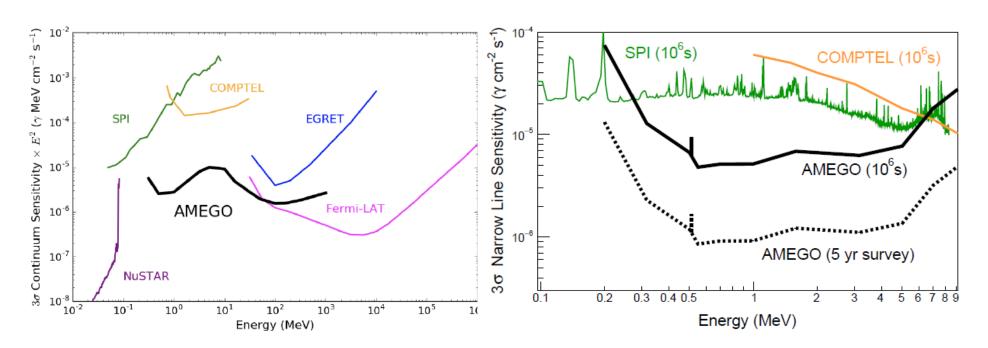

Energy Range	300 keV -> 10 GeV
Angular resolution	3° (3 MeV), 6° (10 MeV), 2° (100 MeV)
Energy resolution	<1% (< 1 MeV), 1-5% (1-100 MeV), ~10% 91 GeV)
Field of View	2.5 sr (20% of the sky)
Line sensitivity	<6x10 ⁻⁶ ph cm ⁻² s ⁻¹ for the 1.8 MeV ²⁶ Al line in a 1- year scanning observation
Polarization sensitivity	<20% MDP for a source 1% the Crab flux, observed for $10^6\mathrm{s}$
Continuum sensitivity (MeV cm ⁻² s ⁻¹)	3x10 ⁻⁶ (1 MeV), 2x10 ⁻⁶ (10 MeV), 8x10 ⁻⁷ (100 MeV)


18

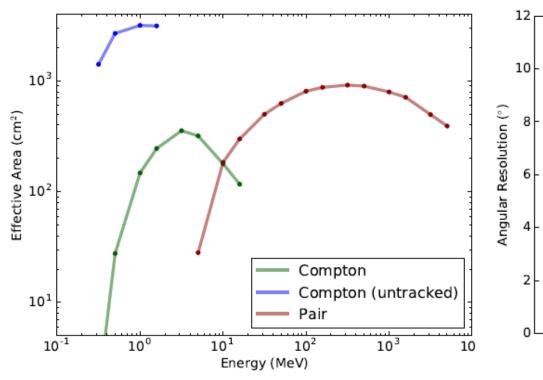


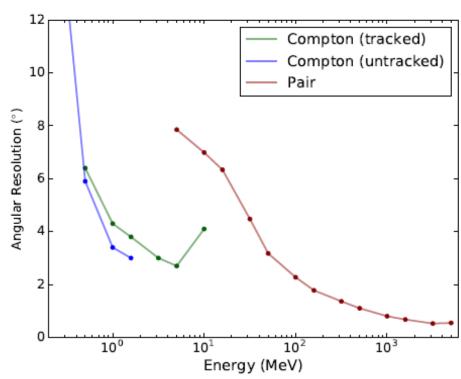
Science and Triggering

- Main trigger: coincidence of signals from 2 consequent layers of Si tracker (threshold 10-20 keV) + signal from CZT (any bar, threshold 50-100 keV)
 - evolves all science measurements in Compton and Pairproduction modes, including polarization
- Compton untracked trigger: coincidence of signals from one layer (both X and Y readout) and CZT
 - provides detection of weak sources with low background
 - improves efficiency at low energy (below 500 keV) for Compton events
- CZT trigger: coincidence of signals from several (TBD) bars above 50-100 keV threshold
 - evolves more efficient line and GRB measurement, however with poorer localization

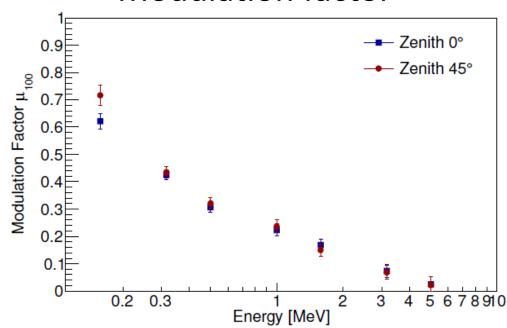


1


連続成分感度

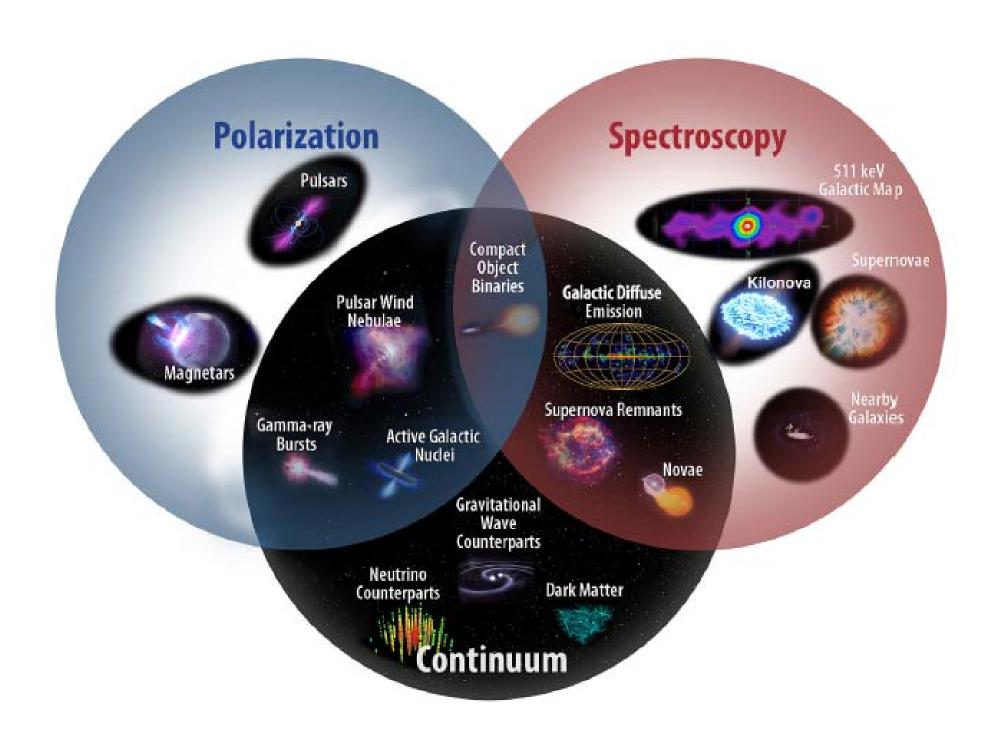

ライン感度

有効面積


角度分解能

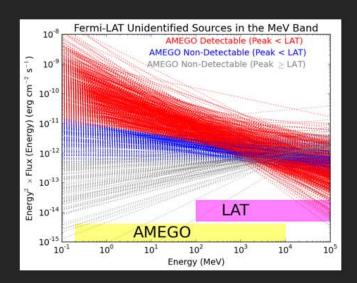
10MeV異常でFermi/LATより 角度分解能 良い

偏光観測 Modulation factor


What Science is there?

Essentially all topics in high-energy astrophysics will benefit from the capabilities provided by AMEGO, including four broad scientific objectives:

- Astrophysical Jets: Understand the formation, evolution, and acceleration mechanisms in astrophysical jets;
- Compact Objects: Identify the physical processes in the extreme conditions around compact objects;
- MeV Spectroscopy: Measure the properties of element formation in dynamic systems;
- Dark Matter: Test models that predict dark matter signals in the MeV band.


Alexander Moiseev Texas Symposium Cape Town, South Africa December 3-8, 2017

Mystery of Unidentified Sources

About one third (or > 1,000) of Fermi-LAT sources remain unidentified

- WHO ARE THEY?
 - Localization error
 - Dark Matter clumps
 - New source class
- Below 200 MeV, AMEGO with highly improved sensitivity, will discover many new sources and source classes

>50% of Fermi-LAT catalog sources have a peak below the Fermi-LAT band

11

気球実験に対するメリット

全天サーベイ:多数の天体、新種の天体の発見

連続モニター : GW/high-eニュートリノ対応天体、

突発天体のフレア

既存の技術が多いので、検出器TRLがそこそこのレベルで、 見通しがよい

他のメリット

フェルミ衛星のメンバーが多く、日本側の顔も知られている