Balloon Observation of the Galactic Center Region with MeV gamma-ray telescope in SMILE-2+

Kei Yoshikawa

T. Tanimori, A. Takada, Y. Mizumura ¹, T. Ikeda, T. Takemura, Y. Nakamura, K. Onozaka, K. Saito, M. Abe, S. Ogio, M. Tsuda, Y. Yoshida,
H. Kubo, S. Kurosawa ², K. Miuchi ³, K. Hamaguchi ⁴, T. Sawano ⁵,
Kyoto University, ¹ISAS/JAXA, ²Tohoku University,
³ Kobe University, ⁴University of Maryland, ⁵Kanazawa University

photo : Just before Launching @ Alice Springs, Australia, April 7th, 2018

Contents

- Galactic Center Region in MeV band
 - to decide emission sources
- Preliminary results of SMILE-2+
- Future work of SMILE-3
- Summary

Galactic Center Region in MeV band

lack of knowledge of MeV band

data ~ 5-10 x theorical line (IC)

IC: Inverse Compton between cosmic electron and cosmic optical-infrared-microwave background

Possible Candidate

- unidentified point sources ?
- nuclear gamma-rays ?
- light dark matter ?

We cannot decide the emission sources using the observations data until now.

Problems of Observation in MeV band

Difference in Sky maps COMPTEL 1-30 MeV, 32 sources (9 years)

G. Principe et al. (2018)

lower sensitivity in MeV band • Contaminations of point sources (Half Power Radius < several ten degrees)

-huge backgrounds (S/N $< 10^{-2}$)

Requirements for the next-generation observation :

- High S/N and High-resolution Image
- Wide-energy-band detection
- Large Field of View

Electron-tracking Compton Camera : ETCC

• Gaseous TPC : Scattering Target track and energy of recoil electron

 Scintillator : Absorber position and energy of scattered gamma ray

> measure all the parameters of Compton-scattering kinematics

- 1 photon \rightarrow direction and energy
- Large field of view
- strong noise reduction
 - Compton kinematical test with a angle
 - Particle identification with dE/dx ratio

SMILE Project

Aim and Flight Overview of SMILE-2+

Aim:

certification of the imaging spectroscopy of ETCC, using celestial objects

Targets:

511 keV line and Diffuse gamma rays from Galactic Center Region, Cosmic diffuse gamma-rays, and Crab nebula

We succeeded in the balloon flight as planned.

43rd COSPAR, Sydney, January 30, 2021

Detector and Performance of SMILE-2+

43rd COSPAR, Sydney, January 30, 2021

⁴³rd COSPAR, Sydney, January 30, 2021

Method of Data Analysis

We have Two types of event analysis. Here we mainly present Low-energy event.

Event selection

- 1. single scintillator hit
- 2. fully contained electron selection
- 3. certification of Compton kinematics using a angle selection
 - Only simple selection
 - No heavy veto for gamma-rays

Light curve after event selections

43rd COSPAR, Sydney, January 30, 2021

Light curve after event selections

All peak times are consistent with the culmination time.

Light curve after event selections

An excess appeared (total: ~10σ)
 @ air mass < 5 g/cm² for GC

~0.5 Hz -> 10^{-2~-1} [ph/s/cm²/sr/MeV] ≈ past observation of galactic diffuse gamme

We possibly detected galactic center region by simple light curve.

ON/OFF Analysis and Deconvoluted Spectrum

Future work in SMILE-3

Celestial-objects origin

Inext balloon observation: SMILF-3

Spatial resolution ~10deg. @ 0.5 MeV

Effective area ~5 cm² @ 0.5 MeV

Dark matter origin

What is origin?

- > Unresolved celestial objects ?
 - -> (Crab @ G.C.) × O(100)
- > Convolution of some gamma-ray lines?
 - -> de-excitation lines are not discovere...
- \succ Others?
 - Carr+ (2010) -> evaporation of primordial black holes
 - -> annihilation of dark matters Ahn+ (2005)

43rd COSPAR, Sydney, January 30, 2021

50

[events] 100

-> concentrate to galactic plane

-> like mass-distribution

Summary

- In MeV band in the GCR, observation data is higher than theorical line (IC). The candidates which make the enhancement are unidentified point sources, nuclear gamma-rays, and light dark matter etc..
- ETCC provides Imaging Spectroscopic and high S/N (~1) observations.
- The aim of SMILE-2+ is to certificate imaging performance of ETCC using celestial objects.
- Observation times of the galactic center region were ~8 hours.
- Because of High S/N, the light curves have the peaks whose times are consistent with the culmination.
- We expect to reveal both Spectra and Intensity map in SMILE-2+ data.
- Next Balloon observation, SMILE-3 is long duration balloon (one month). The sensitivity of SMILE-3 is 5-10 times better than COMPTEL. We will get 10² -10³ times data for Galactic diffuse continuum and annihilation line, and reveal how the annihilation line distributes.
 Thank you.