Development of an Electron-Tracking Compton Camera using CF₄ gas at high pressure for improved detection efficiency

Michiaki Takahashi

N. Higashi, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa,
K. Miuchi, K. Nakamura, J. D. Parker, T. Sawano,
A. Takada^A, T. Tanimori, K. Taniue, and K. Ueno

Dept. of Physics, Graduate school of Science, **Kyoto University**, Kyoto, Japan ^AISAS/JAXA, Kanagawa, Japan

The Twelfth Vienna Conference on Instrumentation, Vienna, Austria 20 February 2010

Outline

- Introduction
 - Electron-Tracking Compton Camera (ETCC)
 - Medical imaging / MeV gamma-ray astronomy
- Optimization of gas mixture
- Operation at high pressure
- Summary

Electron-Tracking Compton Camera (ETCC)

B26 K. Ueno, A22 S. Kurosawa

µTPC (Time Projection Chamber) --- 3D track and energy of **Compton-recoil electron Scintillation camera** --- position and energy of scattered gamma ray

μTPC (Time Projection Chamber) for 3D electron track

 \therefore 2D readout + Drift time \rightarrow 3D track

Prototype μ TPC size : 10 × 10 × 10 cm³ Gas : Ar/C₂H₆ (90:10) at 1 atm, sealed Position resolution : ~ 150 μ m (1D) Stable gas gain : ~ 30000 (μ PIC : ~ 3000, GEM : ~ 10)

GSO and LaBr₃ Scintillation Cameras

15 x 15 cm² Camera (GSO or LaBr₃ + Multi anode PMT (H8500, HPK))

- Number of pixels: 576
- Pixel size $6 \times 6 \times 13 \text{ mm}^3$ (GSO) $6 \times 6 \times 15 \text{ or } 20 \text{ mm}^3$ (LaBr₃)
- GSO Energy resolution :10.0 % (@662keV, FWHM)
- LaBr₃ Energy resolution: 6.5% (@662keV, FWHM)
- Position resolution: 6mm

MeV gamma-ray camera projects

Examples of Medical Imaging

Zn-65-Porphyrin imaging (1116 keV)

Porphyrin was accumulated in RGK-36 which is the tumor of rat stomach cancer.

Spatial resolution ~ 10 mm (FWHM)

Energy window : $\pm 10\%$ 1004 ~ 1228 keV Activity : 0.16 MBq Time : 110.5 hours Events : 173 events

2 sources imaging **Time : 6 hours**

For High Sensitivity

- Increase detection area
- Multi-head camera $(10 \times 10 \times 10 \text{ cm}^3 \times 2,3,...)$
- Developing a large size ETCC (30 × 30 × 30 cm³)

- Improvement of detection efficiency
- Optimization of gas
- Operation at high pressure

2 times better than our prototypes Selection of gas sealed in μ TPC Ar/C₂H₆ (90:10) \rightarrow CF₄ gas mixture

Merit of CF₄ gas

Small diffusion \rightarrow better position resolution (for μ TPC) \rightarrow better angular resolution (for ETCC)

Iow Z (C : Z=6, F : Z=9) and 42 electrons in one molecule

→ Compton scattering is dominant → higher efficiency (for ETCC)

Demerit of CF₄ gas

Low gas gain \rightarrow isoC₄H₁₀ gas (penning effect)

Figh dependence of drift velocity on electric field \rightarrow

worse position resolution ?

Optimize the gas mixture

Gas Ar/C_2H_6 (90:10) Ar CF_4 $isoC_4H_{10}$

Measurement

- 1. Gas Gain
- 2. Position Resolution

Requirements : High CF₄ ratio Gas Gain ~20,000

High Pressure

Ar/ C_2H_6 (90:10) at 1 atm Ar/ C_2H_6 (90:10) at 2 atm Ar/ CF_4 /iso C_4H_{10} (54:40:6) at 1 atm Ar/ CF_4 /iso C_4H_{10} (54:40:6) at 1.4 atm

Measurement

- 1. Gas Gain
- 2. Drift Velocity
- 3. Position Resolution
- 4. Energy Resolution

Position Resolution

Energy Resolution 31 keV X-ray from ¹³³Ba (31 keV)

Ar/CF₄/isoC₄H₁₀ (54:40:6) at 1 atm

Ar/C₂H₆ (90:10) at 2 atm

Ar/CF₄/isoC₄H₁₀ (54:40:6) at 1.4 atm

60.0% (FWHM) @31 keV

Imaging with ETCC gamma-ray from ¹³³Ba (356 keV, 800 kBq)

Efficiency and Angular Resolution (¹³³Ba 356 keV)

Gas	Pressure	Efficiency	ARM (FWHM)	SPD (FWHM)
Ar/C ₂ H ₆ (90:10)	1 atm (1.81 × 10 ⁻⁵	10.4°	114.8°
Ar/C ₂ H ₆ (90:10)	2 atm	3.55 × 10 be	etterby	105.1°
Ar/CF ₄ /isoC ₄ H ₁₀ (54:40:6)	1 atm	2.44 × 10 fa	ctor117.94	117.9°
Ar/CF ₄ /isoC ₄ H ₁₀ (54:40:6)	1.4 atm 🔇	3.51 × 10 ⁻⁵	11.2°	119.1°

Ar/CF₄/isoC₄H₁₀ (54:40:6) at 1.4 atm Imaging of ¹³³Ba 15 cm away from top of μTPC

Summary

- In order to improve the efficiency of the ETCC, we have optimized the gas mixture and pressure sealed in the μTPC.
- The highest ratio of CF₄ gas with steady gas gain of ~ 20,000 is Ar/CF₄/isoC₄H₁₀ (54:40:6).
- The diffusion constant of Ar/CF₄/isoC₄H₁₀ (54:40:6) is
 2 times better than that of Ar/C₂H₆ (90:10), so the position resolution is improved.
- The efficiency for the ETCC using Ar/CF₄/isoC₄H₁₀ (54:40:6) at 1.4 atm is 2 times higher than that using Ar/C₂H₆ (90:10) at 1 atm, and those ARMs are comparable (~11° at 356 keV (FWHM)).

Thank you for your attention