電子飛跡検出型コンプトンカメラ に用いるガスの最適化

高橋慶在

京大理: 谷森達, 窪秀利, 身内賢太朗, 株木重人, Parker Joseph, 上野一樹, 黒澤俊介, 岩城智, 澤野達哉, 谷上幸次郎, 中村輝石, 東直樹, ISAS/JAXA: 高田淳史

- 1. 我々のMeV γ線コンプトンカメラ
- 2. ガス組成最適化
- 3. ガス高圧化
- 4. まとめ

日本物理学会 第65回年次大会 2010年3月21日(日) @ 岡山大学

μTPC (Time Projection Chamber)

GEM (Gas Electron Multiplier) (F. Sauli (1997)) +µPIC (micro Plxel Chamber) ← 2次元読み出し micro pattern gaseous detector ∴ 2次元情報 +ドリフト時間 → 3次元飛跡

プロトタイプガス : **Ar/C₂H₆ (90:10), 1気圧**, 封じ切り μTPCの大きさ : 10 × 10 × 10 cm³ 位置分解能 : ~ 150 μm (1次元) 安定ガス利得 : ~ 30000 (μPIC : ~ 3000, GEM : ~ 10)

MeVγ線プロジェクト

天体観測:

Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment (SMILE)

- 1. SMILE-I (2006年放球)
 - 高度35kmでETCCの動作テスト シンチ: GSO
 - 宇宙拡散γ線と大気γ線を約400光子観測~4時間

2. SMILE-II を予定

••• Takada, et al. (2009)

・ Crab NebulaやCygnus X-1の観測~3時間

利点: エネルギーダイナミックレンジが広く (300 – 3000 keV)、視野が広い

(SPECT < 300 keV, PET 511 keV)

シンチ: LaBr₃

1. 複数RI Tracerイメージング

•••新しいRI薬剤の開発 •••株木講演 21pBS-9

2. 陽子線治療

・・・即発γ線のリアルタイムモニターとして使用

•••黑澤講演 20pBF-12

検出効率向上に向けて

- ◆ 検出体積を増やす
- ・ETCCを複数台使用 (10×10×10 cm³×2,3,...) ・・・株木講演 21pBS-9
- 大型ETCCの開発 (30×30×30 cm³) …東講演 20pBP-2

◆ 検出効率の向上

・ガス種の最適化] 目標: プロトタイプの
 ・ガスの高圧化] 2倍以上の検出効率

μTPCに封入するガスの検討

 Ar/C_2H_6 (90:10) $\rightarrow CF_4$ gas mixture

 CF₄ガスの利点
 本 拡散が小さい → 位置分解能の向上 (for µTPC) → 角度分解能の向上 (for ETCC)
 本 低Z (C : Z=6, F : Z=9) かつ1分子中に42個の電子を持つ → コンプトン散乱が優位 → 検出効率の向上 (for ETCC)

CF₄ガスの欠点 ★ ガス利得が低い → isoC₄H₁₀ガス(ペニング効果)
★ ドリフト速度が電場に強く依存する →
位置分解能悪化の恐れ ?

使用ガス ✦Ar/C₂H₆ (90:10) ✦Ar ✦CF₄ ✦isoC₄H₁₀

口於

放射線源

測定項目:ガス利得

目標 : CF₄の混合比を高く ガス利得 ~20,000

測定ガス種(全45種)

N _o CF	ベースガス組成比	No.	ガス組成比	No.	ガス組成比
1	4 CF ₄ /isoC ₄ H ₁₀ (95:5)	16	Ar/CF ₄ /isOC ₄ H ₁₀ (78:20:2)	31	Ar/CF ₄ /isoC ₄ H ₁₀ (64:30:6)
2	CF ₄ /isoC ₄ H ₁₀ (90:10)	17	Ar/ CE_4 /iso CH_{10} (77:20:3)	32 C.	$Ar/CE/isoC_4H_{10}$ (63:30:7)
3	CF ₄ /isoC ₄ H ₁₀ (80:20)	18	$Ar/CF_{4}/isoC_{4}H_{10}$ (76:20:4)	33	Ar/CF ₄ /isoC ₄ H ₁₀ (56:40:4)
4	Ar/C_2H_6 (90:10)	19	Ar/CF ₄ /isoC ₄ H ₁₀ (75:20:5)	34	Ar/CF ₄ /isoC ₄ H ₁₀ (55:40:5)
A r	26 _A r/C ₂ H ₆ /CF ₄ (72:8:10)	20	Ar/CF ₄ /isoC ₄ H ₁₀ (74:20:6)	35	Ar/CF ₄ /isoC ₄ H ₁₀ (54:40:6)
6	Ar/C ₂ H ₆ /CF ₄ /isoC ₄ H ₁₀ (69.3:7.7:20:3)	21	Ar/CF ₄ /isoC ₄ H ₁₀ (73:20:7)	36	Ar/CF ₄ /isoC ₄ H ₁₀ (53:40:7)
7	Ar/C ₂ H ₆ /CF ₄ (63:7:30)	22	Ar/CF ₄ /isoC ₄ H ₁₀ (72:20:8)	37	Ar/CF ₄ /isoC ₄ H ₁₀ (52:40:8)
8	Ar/C ₂ H ₆ /CF ₄ (54:6:40)	23	Ar/CF ₄ /isoC ₄ H ₁₀ (73:25:2)	38	Ar/CF ₄ /isoC ₄ H ₁₀ (49: <mark>45</mark> :6)
9	Ar/C ₂ H ₆ /CF ₄ (45:5:50)	24	Ar/CF ₄ /isoC ₄ H ₁₀ (72:25:3)	39	Ar/CF ₄ /isoC ₄ H ₁₀ (47:50:3)
10	$Ar/C_2H_6/CF_4/isoC_4H_{10}$ (42.3:4.7:50:3)	25	Ar/CF ₄ /isoC ₄ H ₁₀ (71:25:4)	40	Ar/CF ₄ /isoC ₄ H ₁₀ (46:50:4)
11	$Ar/C_2H_6/CF_4$ (27:3:70)	25	Ar/CF ₄ /isoC ₄ H ₁₀ (70:25:5)	41	Ar/CF ₄ /isoC ₄ H ₁₀ (45:50:5)
12	Ar/CF ₄ /isoC ₄ H ₁₀ (95:3:2)	27	Ar/CF ₄ /isoC ₄ H ₁₀ (69:25:6)	42	Ar/CF ₄ /isoC ₄ H ₁₀ (44:50:6)
13	Ar/isoC ₄ H ₁₀ (90:10)	28	$At_4/F_4/isoC_4H_{10}$ (67:30:3)	43	Ar/CF ₄ /isoC ₄ H ₁₀ (43:50:7)
14	Ar/CF ₄ (90:10)	29	$Ar/CF_{4}/isoC_{4}H_{10}$ (66:30:4)	44	Ar/CF ₄ /isoC ₄ H ₁₀ (42:50:8)
15	Ar/CF ₄ (80: <mark>20</mark>)	30	Ar/CF ₄ /isoC ₄ H ₁₀ (65:30:5)	45	Ar/CE ₄ /IsoC ₄ H ₁₀ (40:50:10)

♠ Ar/C₂H₆ (90:10)の1気圧
 ♠ Ar/C₂H₆ (90:10) の2気圧
 ♠ Ar/CF₄/isoC₄H₁₀ (54:40:6)の1気圧
 ♠ Ar/CF₄/isoC₄H₁₀ (54:40:6) の1.4気圧

ETCCを用いたイメージング 放射線源¹³³Baからのγ線 (356 keV, 800 kBq)

検出効率と角度分解能 (133Ba 356 keV)

Ar/CF₄/isoC₄H₁₀ (54:40:6) 1.4気圧 ¹³³Baのイメージング µTPC上面から15cmに配置

まとめ

- 検出効率向上の為、μTPCに封入するガスの組成最 適化と高圧化の試験を行った。
- CF₄の混合比が最も高く、ガス利得~20000で安定な 組成比は Ar/CF₄/isoC₄H₁₀(54:40:6)であった。
- Ar/CF₄/isoC₄H₁₀(54:40:6)はAr/C₂H₆(90:10)比で拡散 係数が半分になり、μTPCの位置分解能が向上した。
- Ar/CF₄/isoC₄H₁₀(54:40:6)の1.4気圧は、Ar/C₂H₆
 (90:10)の1気圧比で約2倍の検出効率を達成し、 ARMは同等の11度@356keV(FWHM)を得た。