

SMILE: 次世代広視野MeVガンマ線望遠鏡を 用いた天体観測気球実験計画

京都大学 高田淳史

谷森達, 窪秀利, 水本哲矢, 水村好貴, 古村翔太郎 岸本哲朗, 竹村泰斗, 中増勇真, 吉川慶 谷口幹幸, 中村優太, 黒澤俊介, 澤野達哉

MeVガンマ線天文学とETCC
SMILE-2+/3の設計
SMILE-2+へ向けた要素開発状況
まとめ

ガンマ線を見る

放射性同位体・原子核の脱励起・粒子の崩壊 対消滅・制動放射・シンクロトロン放射 逆コンプトン散乱 …etc

観測対象の スペクトルだけが見たい

軟ガンマ線にあったイメージング方法が必要

Coded mask

Event毎には 方向の情報がない Compton imaging

Event毎には 1角のみ方向情報がある

到来方向を得るには情報が足らない⇒ 統計的手法で方向分布を推測

New imaging

Event毎に 2角の方向情報を得る

観測領域に被る BGだけ考えれば良い → 大幅にSN比を改善

「ガス」検出器であることについて

	ガスTPC		半導体
	Ar 1 atm	CF ₄ 3 atm	Si
電子の数	18	42	14
密度	1.78 mg/cm ³	10.9 mg/cm ³	2.33 g/cm^3
厚み	300 mm		0.5 mm×32層
散乱確率 300 keV	0.507 %	3.26 %	32.5% (1層:1.22 %)
散乱確率 600 keV	0.386 %	2.48 %	25.8 % (1層:0.930 %)
幾何面積	30×30 cm ²		$5 \times 5 \text{ cm}^2$
散乱有効面積 300 keV	4.56 cm ²	29.3 cm ²	8.13 cm ²
散乱有効面積 600 keV	3.47 cm ²	22.3 cm ²	6.46 cm ²

「ガスだから有効面積が小さい」は間違い!!

SMILE-II+ ETCC

 ▶ 底面の厚みを増大 + 電子の測定にGSOも使用 + シンチレータ間の隙間減
⇒ 400 keV以上で 有効面積の大幅な改善
▶ ガスをCF₄ 3気圧に
⇒ 300 keVで>10 cm² ガスの変更のみで SMILE-3へ移行可能

MPPCによるシンチレータ読み出し回路 6x6x13 mm GSO 線源: 35 mm 8000 8x8 pixelアレイ count ¹³⁷Cs 6000 11% with PMT 4000 8% with MPPC 18pc 2000 0 400 600 800 1000 200 2 mmL

keV

keV

ADC

2.6Me

169 mm

preamp

FPGA基板

FPGA

779ke 662ke 511keV 344ke ADC_ GSO + MPPC 20000 18000 ow gain 恒温槽内: 15℃ 16000 14000 12000 10000 > 8% @ 662 keVの 8000 エネルギー分解能 6000 4000 > 0.12 - 2.6 MeVの 2000 ダイナミックレンジ 0 0 1000 1500 2000 2500 500

MPPC 読み出しユニットを立ち上げ中 徐々にPMTから置き換えを行う予定

飛跡解析改良 SMILE-2+ 現在のSMILE-II SMILE-I Drift [clock] Drift [clock] Drift [clock] ⁶ ⁵ ⁵ ⁵ ⁷ ⁷ ⁷ ⁷ 240 240 240 2.5 220 220 220 1.5 200 200 200 散乱点は 反跳方向の 散乱点 反跳方向の 180 不定性は大 どちら? 180 180 0.5 精度が向上 散乱点 160<u>⊥.</u> 20 30 35 40 160<u>↓</u> 20 160<u>⊫</u> 20 30 35 30 35 25 25 35 40 45 25 Anode [strip] Anode [strip] Anode [strip] ARM : **ARM** : ~5° $ARM : ~10^{\circ}$ SPD : SPD : ~200° SPD : ~100°

> SMILE-I \Rightarrow SMILE-II

取り零していたhit情報も出力できるようDAQを変更

> SMILE-II \Rightarrow SMILE-2+

エネルギー測定の為のアナログ波形情報も飛跡解析に使用 データ収集システムはSMILE-IIと同じ

まとめ

- SMILE-2+/3へのupgradeを進行中
 - シンチレータをガス容器内部に設置
 - 。シンチレータの厚みを増大
 - → PSF・有効面積の向上、広帯域化

- SMILE-2+
 - 有効面積:~2 cm2 (<400 keV) PSF:~5度 (662 keV)
 - 観測対象:銀河中心領域からの電子陽電子対消滅線 @ Alice Springs かに星雲/Cyg X-1 @ Fort Sumner

SMILE-3

有効面積:~10 cm2 (<500 keV) PSF:~5度 (662 keV)

観測対象:銀河面に広がる²⁶AI

電子陽電子対消滅線の銀河面分布 など

Thank you for your attention!

http://www-cr.scphys.kyoto-u.ac.jp/research/MeV-gamma/wiki