

# SMILE

高田 淳史 (京大理)



#### 電子陽電子対消滅線

G. Weidenspointner+, Nature (2008)



L. Bouchet+, ApJ (2010)

01 0.0015

0.002



0.0025

0.003

CSSE/CGRO 0 0 0 -5 -10 -5 -10 W. R. Purcell+, ApJ (1997) -15 20 10 0 -10 -20 -30 Galactic Longitude (degrees)

- ▶ 銀河面に垂直に伸びるような分布はない
  ▶ 銀河面方向には一時非対称性が噂された
  ⇒ その後否定
- ➤ これまでの観測を尤もらしく説明する 分布モデルが提案された
- 対消滅線を生成する陽電子の>90%は
  positroniumによる対消滅
- ▶ 陽電子の生成から対消滅までに動いている?
- ▶ <sup>26</sup>AIは明らかに生成に寄与、だが足りない





### 系内拡散ガンマ線

galdef ID 54\_z04LMS A. W. Strong+ (2011)に加筆 26AI sr<sup>-1</sup> s<sup>-1</sup> MeV 0.00<l<30.00, 330.00<l<360.00 -10.00<b<-0.00, 0.00<b<10.00 ▶ 銀河面に広がる放射は MeV領域にも存在 511 keV MeV領域の放射起源について 60Fe 深い議論はされていない  $E^2 \times Intensity, cm^2$ 01  $r^2$ 観測の信頼度不足 ▶ 宇宙線電子による Fermi 逆コンプトンと観測値には COMPTEL 乖離がある SPI ▶ 空間分解されていない 天体の集合体? ▶ 宇宙線で励起された IC 原子核からの脱励起線? **10**<sup>-3</sup> > 他の何か? e 10 **10<sup>-2</sup> 10**<sup>-1</sup> 10<sup>3</sup> **10**<sup>5</sup> 10<sup>2</sup> **10<sup>4</sup>** 10 Energy, MeV









帯域:0.3~5 MeV 有効面積:~2 cm<sup>2</sup> (0.3 MeV) PSF:~15<sup>°</sup> (0.6 MeV) 重量:511 kg 消費電力:~250W

#### ▶ 観測対象:

銀河中心領域の511 keV

かに星雲

- ▶ 2018年4月7日 6:24 (ACST)放球
- > 高度 >38 km で~26時間の水平浮遊
- ▶ ETCCは飛翔中おおよそ安定に動作
- ▶ 機器は2018年4月9日に無事回収 ⇒ 現在も京大で動作中









## 上空で取得した荷電粒子の飛跡







## **ETCC**のガンマ線解析



#### 低エネルギー事象解析

- ▶ 水平浮遊時のデータを解析 4/7 8:45 - 4/8 4:05 (ACST) live time 5.8 x 10<sup>4</sup> sec データ数 3.3x10<sup>7</sup> events
- ≻ Event selection
  single scintillator hit 12.0%
  有効体積内に散乱点 5.3%
  fully contained e<sup>-</sup> 1.1%
  Compton運動学 0.5%
  ⇒ 2桁の雑音を除去
  SMILE-Iとも無矛盾







# Photon flux

- SMILE-2+の観測点は
  宇宙線電子の
  逆コンプトンより多そう
- > SPI・COMPTEL・SMILE-2+と 異なる検出器が全てICより多い ⇒ 何かは在る
- SMILE-2+のデータは
  詳細を詰めている所
  - ▶ 応答関数
  - ▶ 大気での散乱効果

など







## 次期計画へ

検出感度を向上させて科学観測へ

|構造体の見直し(軽量化)

→ @ Alice Springs : e<sup>±</sup>の銀河面分布 · Cen A · NGC4945他 @ Fort Sumner : Cyg X-1 / Crabの偏光観測



姿勢センサの見直し



### 将来計画の予想検出感度



## SMILE-3で期待される観測例

電子陽電子対消滅線



有效面積 ~5 cm<sup>2</sup> @ 0.5 MeV 空間分解能 ~10度 @ 0.5 MeV 南半球の高度40 kmで30日間観測

()



[events]





# まとめ

#### ・ ETCCによるMeVガンマ線天文学の開拓

- 天球上での空間分解能が重要 ← 画像処理の前にSN比は決まる
- 雑音事象を極限まで落とす事も重要

#### SMILE-2+

- 2018年4月7日に豪州Alice Springsから放球
- 高度38.4 km以上での水平浮遊を26時間
- 観測対象
  - ・ 銀河中心領域 >10σで連続成分, ~3σで511 keVを検出
  - かに星雲 ~5σで検出
- ▶ 将来計画
  - SMILE-3 (2020年代)
    - 有効面積~10 cm<sup>2</sup>, 角度分解能 5~10度
    - ⇒ 系内拡散ガンマ線/511 keVの銀河面分布・Cen A・<sup>26</sup>Al Cyg X-1/Crab偏光, GRS 1915+105, COMPTEL undefined

...etc

- SMILE衛星 (2030年代)
  - 有効面積~100 cm<sup>2</sup>, 角度分解能 <5度
  - ⇒ 新天体探查

#### Thank you for your attention! http://www-cr.scphys.kyoto-u.ac.jp





