μ-TPCの大型化へ向けた 分割μ-PICの開発

京都大学 理学研究科 宇宙線研究室 澤野達哉

谷森達,窪秀利,身内賢太朗,株木重人,Parker Joseph, 上野一樹,黒澤俊介,岩城智,高橋慶在, 谷上幸次郎,中村輝石,東直樹

もくじ

MeV γ 線カメラとSMILE計画 分割 μ -PIC μ -TPC (分割 μ -PIC+GEM) まとめ

MeVγ線コンプトンカメラ

強力なバックグラウンド除去
 能力

Sub-MeV Y-ray Imaging SMILE計画 Loaded-on-balloon Experiment SMILE-1 (2006年9月1日放球) 成功 □ (10cm)³MeV γ 線カメラ □ダイナミックレンジ0.1~1MeV □ 高度33kmで4時間の水平フライト □宇宙背景・大気γ線を観測~400光子 ■ 次期SMILE-2 (2011年) (takada et al.) 目標: Crab or Cyg X-1といった明るい天体の観測 ⇒SMILE-1の10倍(COMPTELと同程度)以上の 検出感度を目指す ゴスの高圧化・・・・・・・・・・・・・・・・10pSD2 黒澤講演 □ガスStudy・・・・・・・・・・・・・・・・・11aSB10 高橋講演 □有効面積の拡大・・・・・・・・本講演

μ -PIC (Micro Pixel Chamber)

- ピクセル状の電極構造 ストリップ読出し
 - ⇒2次元位置情報
- 典型的Gain~3000
- Gain~6000で1ヶ月 以上安定動作
- 位置分解能~120um
- (10cm)²、(30cm)²
 のサイズ

分割μ-PIC ■ (20cm)²

 検出面シートが 中継基板端から
 0.2mm以下で マウント

■ 4枚で有効面積は (10cm)²の16倍

First Stepとして 1枚単体での性能 評価を行う

μ -TPC

- (20cm)²分割 µ -PICを2枚マウント可能
- ガス組成:Ar90%+C₂H₆10%(分圧比)

44cm 真空容器

64cm

ASD(PreAmp等)

■ ガス封じ切り型
 ■ ガス圧:1atm

10cm

Drift Cage

Uniformity of μ -PIC Gas Gain

Anode列64ストリップ(=2.56cm)毎のGainのばらつき ■「のりしろ」のない側のAnode列のほうがGainが低い

cm分割 μ -PIC+20cmGEM

Uniformity of μ -PIC+GEM Gas Gain Condition

- $\mu \text{PIC:} 470V$ $V_i : 1 \text{ kV/cm}$ $V_{\Delta \text{GEM}} : 320V$ $V_d : 400V/cm$
- *µ*-PIC単体 □ RMS:9**.**3%
- 考えられる悪化の要因
 GEMのGainの偏り
 Induction Fieldの偏り

Stability of μ -PIC+GEM Gas Gain

⇒気球実験での要請値 10%以下を満たす

得られた飛跡のデータを3次元直線にFit
 直線とデータとの残差の分布を取得

■ まとめ

□分割 µ -PIC単体

- Gain : ~1300@480V
- エネルギー分解能:~40%@31keV
- Uniformity of Gain (RMS) : ~9. 3%
- □分割µ-PIC +(20cm)²GEM
 - Gain ~34000 (μ -PIC 470V, $V_{\Delta GEM}$ 320V)
 - Uniformity of Gain (RMS) : ~12. 7%
 - Gain ~18000で2日以上安定に動作

■ 課題

- □分割 µ-PIC2枚を合わせた µ-TPC
 - 2枚の µ-PICをまたぐ粒子飛跡の検出
- □分割 µ -PIC4枚システムへ