32<sup>ND</sup> International Cosmic Ray Conference, Beijing 2011

# A Balloon-Borne sub-MeV/MeV Gamma-ray Compton Camera Using an Electron-Tracking Gaseous TPC and a Scintillation Camera (SMILE)

T. SAWANO<sup>1</sup>, K. HATTORI<sup>1</sup>, N. HIGASHI<sup>1</sup>, I. IWAKI<sup>1</sup>, S. KABUKI<sup>1</sup>, Y. KISHIMOTO<sup>1</sup>, H. KUBO<sup>1</sup>, S. KUROSAWA<sup>1</sup>, Y. MATSUOKA<sup>1</sup>, K. MIUCHI<sup>1</sup>, K. NAKAMURA<sup>1</sup>, H. NISHIMURA<sup>1</sup>, J. PARKER<sup>1</sup>, A. TAKADA<sup>2</sup>, M. TAKAHASHI<sup>1</sup>, T. TANIMORI<sup>1</sup>, K. TANIUE<sup>1</sup>, K. UENO<sup>1</sup>

<sup>1</sup>Cosmic-ray group, Kyoto University, <sup>2</sup>RISH, Kyoto University

### Abstract

We have been developing an Electron-Tracking Compton Camera (ETCC) to open up a window for MeV gamma-ray astronomy. We successfully performed the first balloon experiment in 2006 to detect diffuse cosmic and atmospheric gamma rays (SMILE-I). To build on the success of SMILE-I, we plan to launch a large ETCC to observe celestial objects to test its imaging properties (SMILE-II). To attain this, we are developing a large ETCC using a (30 cm)<sup>3</sup> TPC and low power consumption readout modules for the flight model.

# 1. MeV Gamma-ray Astronomy

Line gamma rays

✓ Nucleosynthesis products : <sup>26</sup>Al, <sup>44</sup>Ti, <sup>57</sup>Co, <sup>56</sup>Co, <sup>56</sup>Ni

2. Electron-Tracking Compton Camera (ETCC) Using a Gaseous TPC and a Scintillation Camera

Compton Method + Electron Tracking ✓ Full reconstruction for each photon ✓ Kinematical background rejection

Gaseous TPC



Scintillation camera

![](_page_0_Picture_14.jpeg)

![](_page_0_Figure_17.jpeg)

# SMILE-IV: 50cm cube camera

| Specification                 | SMILE-I             | SMILE-II<br>(Taiki/Kiruna)               |
|-------------------------------|---------------------|------------------------------------------|
| # of PMTs                     | 36                  | 108 / 216                                |
| TPC volume [cm <sup>3</sup> ] | 10x10x15            | 30x30x30                                 |
| TPC filling gas               | $Xe/Ar/C_2H_6$      | $Ar/CF_4/iso-C_4H_{10}$                  |
| Power Consumption             | 350 W               | 500 W                                    |
| Total Weight                  | 397 kg              | ~ 400 kg                                 |
| Observation Time              | $\sim 4 \text{ hr}$ | $\sim 3 \text{ hr} / \sim 2 \text{ wks}$ |

### (Real Time)

Time [JST]

## 5. Readout Circuit for Lower Power Consumption

**Read-out board based on ASIC** "FE2009bal" chips for TPC

![](_page_0_Picture_27.jpeg)

Read-out module for Scintillation camera

### 2.6 W to 0.6 W for 1 PMT

![](_page_0_Picture_30.jpeg)

### 7. SMILE-II Flight Model 6. Revision of Track Data Read Logic

### **Previous logic**

✓ Only rising time of signals at each clock  $\checkmark$  Mean of the two edge positions among hit data

### New logic

<u>.</u> N 12

✓ Not only rising but also falling time  $\checkmark$  All of the hit position The vertex and the direction of Compton-recoil electron are expected to be measured more precisely.

Typical cosmic muon track took with the new logic

![](_page_0_Figure_37.jpeg)

![](_page_0_Figure_38.jpeg)

# 8. Future prospect

□24-hour power supply system using solar cell and rechargeable batteries. □ Light TPC based on a vessel made of PET. (Extra item)  $\square$  filling gas of CF<sub>4</sub>-mixed gas at 1.5 atm. (Extra item) □ Attitude control system to orient celestial objects. (Extra item)

# 9. Reference

[1] V. Schönfelder et al. A&AS 143 (2000) 45 [2] C. Winkler et al. A & A 411 (2003) 1 [3] F. Sauli, NIM A 386 (1997) 531 [4] T. Tamagawa et al. NIM A 560 (2006) 418 [5] A. Ochi et al. NIM A 471 (2001) 264 [6] H. Nishimura *et al.* NIM **A 573** (2007) 115 [7] A. Takada *et al.* ApJ **733** (2011) 13 [8] K. Ueno et al., IEEE Conf. Rec. (2008) N65-8 [9] L.M.Bartlett *et al.* AIP conf. Proc. **304** (1994) 67 [10] J. Ling, J. Geophys. Res. 80 (1975)