

SMILE15:

新データ取得システムを搭載した 気球搭載用電子飛跡検出型コンプトンカメラの 現状報告

澤野達哉A

谷森達^A 窪秀利^{A,B} Parker Joseph^A 水本哲矢^A 水村好貴^A 岩城智^A 中村輝石^A 松岡佳大^A 古村翔太郎^A 佐藤快^A 中村祥吾^A 身内賢太朗^C 高田淳史^D 岸本祐二^E 上野一樹^F 株木重人^G 黒澤俊介^H 田中真伸^{B,F} 池野正弘^{B,F} 内田智久^{B,F}

京大理^A Open-It^B 神戸大理^C 京大生存圏研^D KEK放射線科学センター^E KEK素核研^F 東海大医^G 東北大金属研^H

物理学会 第68回年次大会 於広島大学東広島キャンパス 2013年3月28日

SMILE Mission

<u>MeVガンマ線天文学</u>

✓ ガンマ線放射機構と宇宙線起源:電子起源放射 or 陽子起源π⁰崩壊放射
 ✓ 元素合成:核ガンマ線(例) ⁶⁰Fe (1173 keV,1332 keV 2.0x10⁶ year)
 地球物理学的意義

✓ 放射線帯MeV電子加速と極域への降下: [NOx]濃度変化 Turunen et al. (2009)

気球観測実験SMILE-IIの概要

	SMILE-I	Takada+ ApJ. (2011)	SMILE-II
目的	気球高度での <mark>雑音事象除去能力</mark> の検証		気球高度での <mark>撮像性能</mark> の検証
放球時期/場所	Sep. 1st 2006, 三陸, 日本		2014-, キルナ, スウェーデン
観測高度/時間	35 km / 3	3 hours (live time)	40 km / \sim 2 weeks (real time)
結果(SMILE-I) /目標(SMILE-Ⅱ)	大気ガンマ/宇宙拡散ガンマ線 観測により原理実証		<mark>有効面積 1cm²@300keV</mark> (中緯度,35km,3時間観測でCrab>5ơ)
μ-ΤΡΟ	10x10x14 cm ³		30x30x30 cm ³
	Xe/A	r/C ₂ H ₆ , 1 atm	Ar/CF ₄ /i-C ₄ H ₁₀ , 1 atm
		-	飛跡データ取得システム改良
PSAs	2048 of 6x6x13 mm ³ , GSO:Ce		6942 of 6x6x13 mm ³ , GSO:Ce
DAQ	event by eventの割込処理		ポーリング読出し
エレクトロニクス	VME, NIM機器の組合せ		NIM不使用,専用の省電力回路

2012年よりこれまでの開発項目を統合した フライトモデルETCCの構築を行ってきた

フライトモデル(FM)組み付け状況

μ-TPC 容器 アルミ製真空容器 窓材 アルミハニカム(3mm厚相当) 有感領域 (30cm)³ (20倍) ガス Ar/CF₄/i-C₄H₁₀(95/3/2), 1atm 読出しストリップピッチ 800 μm エネルギー分解能 22% @ 22 keV

PSAs

シンチレータ GSO(Ce) ピクセルサイズ 6 x 6 x 13 mm³ ピクセル数 6912ピクセル (3倍) エネルギー分解能 10% @ 662 keV エネルギーレンジ 0.1 MeV - 1 MeV

システム

電源電圧 +24 V **消費電力** ~250 W (SMILE-Iと同等) **与圧容器+検出器重量** ~250 kg

フライトモデル(FM)組み付け状況

μ-TPC

容器 アルミ製真空容器 窓材 アルミハニカム(3mm厚相当) 有感領域 (30cm)³ (20倍) ガス Ar/CF₄/i-C₄H₁₀(95/3/2), 1atm 読出しストリップピッチ 800 µm エネルギー分解能 22% @ 22 keV

PSAs

シンチレータ GSO(Ce) ピクセルサイズ 6 x 6 x 13 mm³ ピクセル数 6912ピクセル (3倍) エネルギー分解能 10% @ 662 keV エネルギーレンジ 0.1 MeV - 1 MeV

システム 電源電圧 +24 V **消費電力** ~250 W (SMILE-Iと同等) **与圧容器+検出器重量** ~250 kg

FM ETCC / 新DAQシステム

FM ETCCのDAQシステム

- ・ポーリング読み出し
- ・メモリーボードの<mark>ダブルバッファ化</mark>
- ・CPU: 3台 (VMEbusも3系統)
- ・データにトリガー番号を付与し保存
 6枚のTPC読出し基板および
 5枚のPSAs読出し基板毎に保存
- ・通信: TCP/IP, UDP, RS232C
- ・較正モードとETCCモードをコマンドで切換可

FM ETCC / 新DAQシステム

DAOシステム

FM ETCCのDAQシステム

- ・ポーリング読み出し
- ・メモリーボードの<mark>ダブルバッファ化</mark>
- ・CPU: 3台 (VMEbusも3系統)
- ・データにトリガー番号を付与し保存 6枚のTPC読出し基板および 5枚のPSAs読出し基板毎に保存
- ・通信: TCP/IP, UDP, RS232C

VME bus

前回水本講演資料(改変)

・較正モードとETCCモードをコマンドで切換可

Dead Time(DT)の検証 SMILE-IIで予想されるTrigger rate: ~200 Hz FMのバックグラウンド観測 Trigger rate: 30 Hz, DT: 7 %. 200 Hz -> DT 50% < 80%(旧DAQの外挿) 改善案: data reduction CPUのclockを上げる =>半減まで改善

FM ETCC / µ-TPC

FM ETCC / µ-TPC

RI線源による撮像性能評価試験セットアップ

コンプトンイベントの分光撮像性能

- ・ µ-TPC でのエネルギー損失 > 1 keV
- ・トータルエネルギーが662 keV ±10%

FM ETCCを用いての イメージの取得に成功した! 現在 角度分解能の解析を行っている

コンプトンイベントの検出効率

熱真空環境試験@相模原ISAS

SMILE-IIでの熱環境 -70°C, 3 hPa @ キルナ高度40km **圧力容器系の熱環境試験を実施** 期間 2013/2/18-22 場所 ISAS気球グループ恒温槽 (圧力コントーラ故障中)

確認項目

- ・環境センサ類の動作確認 温度, 気圧, 機器の電圧と電流
- ・DAQが動作し続けるか確認
- ・試験環境
 - -20 °C, 1 hPa -40 °C, 1 hPa

熱環境試験結果

系の放射率に対する平衡温度

まとめ

まとめ

- ・次期気球実験に向けエレクトロニクスを刷新した FM ETCCを構築した
- ・再設計した新DAQのもとFM ETCCの動作を確認した 上空で予想されるデッドタイムは多くて50%
- ・¹³⁷Cs線源を用いて、イメージの取得に成功した
- ・Preliminaryながら性能を評価した Detection efficiency: ~1x10⁻⁴ for 662 keV 目標の1cm² @ 300 keVに近い有効面積が得られそうである
- ・シミュレーションによる検出効率は(30cm)³ETCCでもオーダーで一致
- ・熱真空環境試験を行い、熱設計見直しの必要性を確認

今後

- ・FMのバグ修正、ゴンドラ製作
- ・気球オペレーションと解析のための各種ソフトウェア開発
- ・バックグラウンドシミュレーション
- ・ビームを用いたガンマ&中性子バックグラウンド含めた 天体観測模擬試験の検討
- ・寒さ対策の実施