

IEEE Nuclear Science Symposium, 30 October 2012

Neutron Imaging Detector Based on the µPIC Micro-Pixel Chamber

Kyoto University, Cosmic Ray Group

Joe Parker, K. Hattori, S. Iwaki, S. Kabuki, Y. Kishimoto, H. Kubo, S. Kurosawa, Y. Matsuoka, K. Miuchi, H. Nishimura, T. Sawano, A. Takada, T. Tanimori, K. Ueno

Japan Atomic Energy Agency, Materials and Life Science Facility Division M. Harada, T. Oku, T. Shinohara, J. Suzuki

- Gas gain < 1000 for neutron imaging.
- Efficiency of 18% at 25.3 meV and up to 65% at 0.35 meV (2.5-cm gas depth).
- ~105 µm spatial resolution; 0.6 µs time resolution; <10⁻¹² gamma sensitivity.
- 2 years operation or more on single gas filling.

Improved position accuracy and background rejection via detailed tracking.

30

40

50 60 X (strips)

20

Lin of

Fast neutron and gamma rejection

TOT distribution for scattered proton

Fast neutrons from ²⁵²Cf source

Track-length and energy dep. can be similar to neutron events.

Distinguished by shape of TOT distribution.

Event-by-event TOT sum (1-MBq ¹³⁷Cs)

Gas gain ~600, track-length cut applied

neutron cuts $< 10^{-6}$ (effective gamma sensitivity of $< 10^{-9}$ at gain of ~600).

TOT sum with no cuts and n and γ event rates (¹³⁷Cs + ²⁵²Cf)

Sensitivity of order **10**⁻¹² or less can be achieved at reduced gain without loss of neutron efficiency.

Spatial resolution

- Proton-triton separation
 essential for spatial resolution.
- Proton direction, neutron position determined by 'template' fit.

Measured TOT distribution

T

$$TOT(x,m) =$$

A Template_m[$\hat{x}f_w(x-x_N)$]

 Templates generated with GEANT4 simulation of detector. Image taken at NOBORU, J-PARC in Feb. 2011. Gas gain ~470, Exposure time 29 mins.

Spatial resolution

Images taken at NOBORU, J-PARC in March 2012.

Resolution from knife-edge test

Cadmium test chart, gas gain ~470

	Res(µm)	Eff(%)			
Α	131 ± 3	100			
В	125 ± 3	66			
С	111 ± 4	32			

- Gamma-rejection cuts.
- B. + Z-consistency.
- C. + Two peaks in TOT.

5 cm

intensity (ESF) 9.0 8.0 1 1 3 HS 2.5 T Edge-Line- 🖊 spread

Modulation transfer function

Improvement of spatial resolution

Gas properties

- Shorten proton-triton track lengths.
- Reduce electron diffusion.

Improvements to µPIC

- Improve gain variation (better manufacturing controls).
- Reduce pixel pitch.

Simulation results for different gas mixtures

	Pressure (atm)	Transverse diffusion (µm/cm ^{1/2})	p-t track length (mm)	Expected improvement in resolution
Ar:C ₂ H ₆ : ³ He (63:7:30)	2	273	7.9	(105µm~)
Ar:C ₂ H ₆ : ³ He (63:7:30)	3	231	5.3	~15%
Xe:C ₂ H ₆ : ³ He (50:20:30)	2	183	5.0	~15%
Ar:CO ₂ : ³ He (50:20:30)	2	107	7.4	~15%

Gas parameters determined by MAGBOLTZ. Resolutions estimated with GEANT4.

- Reducing gain variation improves spatial resolution by 5~10% and uniformity by 15~30%.
- In low gain operation, pixel pitch can be reduced to ~200µm.
- * GEANT4 studies are ongoing.

Resolution after diffusion and gain variation improvements: 80~90µm. eliminary!

Plus increased pixel pitch: $< 70 \mu m$.

IEEE Nuclear Science Symposium, 30 October 2012

Recent measurements

* Resonance absorption.* CT test measurement.

Neutron resonance absorption

Data taken at NOBORU in March 2012.

- Measurement of neutron TOF allows selective imaging of nuclides via resonance absorption.
- Good time resolution is essential.

Image vs. TOF (0 ~ 1 ms)

CT test measurement

Summary

µPIC-based time-resolved neutron imaging detector.

- For radiography, neutron resonance absorption imaging/spectroscopy, Bragg-edge transmission, CT imaging, SANS.
- Detector performance.
 - Spatial resolution of 105 μm (100% reconstruction eff.) to 120 μm (32% reconstruction eff.).
 - * Time resolution ~ $0.6 \,\mu s$; very small effective gamma sensitivity < 10^{-12} .
 - Can operate for ~2 years on a single gas filling.
 - After upgrading DAQ and optimizing gas, maximum neutron rate on order of 1 Mcps and spatial resolution <100 µm.

Next

- Develop and test new FPGA code for neutron imaging.
- Beam test of new DAQ at NOBORU this winter.

IEEE Nuclear Science Symposium, 30 October 2012

Extra slides

Resonance absorption: Ag-In-Cd alloy

- Plate thickness: 3 mm.
- * Exposure: 2 hrs.
- * TOF gate: 0 3 ms.
- * Neutron rate: ~10 kcps.
- * DAQ live time: 70%.

Image of ASTM indicator

Image taken with µPIC (100 µm bins)

- * Exposure: 3 hrs.
- * No TOF gate.
- * ~120 kcps.
- * Live time: 14%.

Data taken at NOBORU in March 2012.

X-ray provided with sample

