



# Neutron Imaging Detector based on the µPIC Joe Parker Cosmic Ray Group, Kyoto University

### MPGD2011, 30 Aug 2011



### **KYOTO UNIVERSITY, COSMIC RAY GROUP**

J.D. Parker, K. Hattori, S. Iwaki, S. Kabuki, Y. Kishimoto, H. Kubo, S. Kurosawa, K. Miuchi, H. Nishimura, T. Sawano, T. Tanimori, K. Ueno



### JAPAN ATOMIC ENERGY AGENCY, MATERIALS AND LIFE SCIENCE FACILITY DIVISION M. Harada, T. Oku, T. Shinohara, J. Suzuki

# Neutron Imaging Detector based on the μPIC \* Prototype system and basic operation. \* Demonstration measurements. \* Future improvements.



- \* Ar-C<sub>2</sub>H<sub>6</sub>-He<sup>3</sup> (up to 2 atm total pressure).
- # Gas gain < 1000 for neutron imaging.</p>
- \* TPC measures 3D proton-triton tracks.
- Compact, high-rate FPGA-based DAQ.
- Energy deposition estimated by timeabove-threshold method.
- Efficiency up to ~30%, position res. of ~120 μm, time res. of ~1 μs.

### **ALUMINUM DRIFT**



### DAQ and FPGA logic Amplifier-Shaper-Discriminators (ATLAS, KEK) **FPGA** VME encoder μPIC memory 33-bit LVDS (× 2) /ME bus 32 bits:

orientation,

time,

position,

edge



**Digital out** 

 $(256 ch \times 2)$ 

- Two words per pulse.
- 'edge bit' saved with each data word.



**External** 

gate

PC

### **PROTON-TRITON TRACKS**



# DAQ and FPGA logic Amplifier-Shaper-Discriminators (ATLAS, KEK)



### **DATA ENCODING**

- \* Two words per pulse.
- \* 'edge bit' saved with each data word.



### **PROTON-TRITON TRACKS**



# DAQ and FPGA logic

Amplifier-Shaper-Discriminators (ATLAS, KEK)



### **DATA ENCODING**

- Two words per pulse.
- \* 'edge bit' saved with each data word.



### **PROTON-TRITON TRACKS**



# DAQ and FPGA logic

Amplifier-Shaper-Discriminators (ATLAS, KEK)



### **DATA ENCODING**

- Two words per pulse.
- \* 'edge bit' saved with each data word.



### **PROTON-TRITON TRACKS**



# Test experiments at J-PARC

Experiments in Nov. 2009, June 2010, and Feb. 2011.

Ibaraki

- \* Beam power ~120 kW.
- \* Carried out at NOBORU beam line.
- Fill gas: Ar-C<sub>2</sub>H<sub>6</sub>-<sup>3</sup>He (63:7:30) at 2 atm, efficiencies ~28%(5 cm), ~13%(2.5 cm).





Materials and Life Science Facility (MLF)

### **NOBORU BEAM LINE**

- Moderator-to-detector distance of ~14.5 m.
- \* Max. beam size:  $10 \times 10$  cm<sup>2</sup>.
- # 25 Hz pulse rate, 10 Å bandwidth.

## Long term operability and <sup>3</sup>He usage

- Same gas filling used for first two experiments (separated by 8 months).
- No degradation in performance seen in June experiment.
- Gain recovered by increasing anode voltage.
- Detector remained operable after more than 1 year on single gas filling.

|                            | Time after<br>filling | Gain<br>(% of initial) |
|----------------------------|-----------------------|------------------------|
| 1 <sup>st</sup> Exp (2009) | 0 months              | 100                    |
| 2 <sup>nd</sup> Exp (2010) | 8 months              | 67                     |
| Dec 2010                   | 13 months             | 30                     |



### **Strategies to extend operation**

- Annealing of vessel and µPIC against outgassing.
- \* Careful selection of materials.
- Gas purification system (c.f. Nakamura's talk, 16:45 today).

# DAQ performance at NOBORU

- Time-averaged data rates from 200 kHz ~ 9.4 MHz.
- Neutron rate of 80~100 kHz.
- **\*** Large dead time (40 ~ 85%).

### **DAQ BOTTLENECKS**





- Reduction in incoming data means fewer VME readouts.
- Effectiveness depends on details of TOF distribution and gate.
- Useful for Bragg transmission, resonance absorption.

# Neutron-gamma separation



- \* Both neutrons and  $\gamma$ 's are detected ( $\gamma$  efficiency ~10<sup>-3</sup>).
- \* Neutrons selected by cuts in total timeabove-threshold and 3D track length.
- \* Fraction of detected  $\gamma$ 's surviving neutron cuts < 10<sup>-6</sup> (effective gamma sensitivity of < 10<sup>-9</sup>).

### **SAMPLE TOF DISTRIBUTIONS**



Data taken at NOBORU, J-PARC in June 2010.

# Position resolution with PID

### **Cd TEST CHART**









Track length from end-points



### Position from midpoint of track.

Resolution:  $\sim 1 \text{ mm}(\sigma)$ 

Resolution with PID:  $349 \pm 36 \ \mu m \ (\sigma)$ 

(Includes beam dispersion.)

Data taken at NOBORU, J-PARC in Nov. 2009.

# Refining position resolution

- Two methods: End-Point Extrapolation (EPE) and Peak Interpolation (PI).
- \* Combining both methods produces best result of  $\sigma = 118.4 \pm 0.2 \ \mu m$ .



Data taken at NOBORU, J-PARC in Feb. 2011.

**Pulse width** 

10

20

30

40

Track length from extrapolation

Time-above-thres

15

Track length

from peaks

50 60 Y (strips)

# Image of a wristwatch

### μ**PIC (29 MIN.)**



### IMAGING PLATE (200 MIN.)



- \* Bin size can be decreased with higher statistics.
- Image processing techniques could improve image.

Data taken at NOBORU, J-PARC in Feb. 2011 (µPIC).

MPGD2011, 30 Aug 2011

# Demonstration measurements

- \* Small-angle neutron scattering.
- **\*** Resonance imaging.
- **\*** Bragg-edge transmission.



# Small-angle neutron scattering



Spherical SiO<sub>2</sub> nanoparticles (diameter ~200 nm).

- Sample-to-detector distance of 1666 mm.
- \* Exposure time of 35 min.
- Radial position of peak depends on wavelength but is constant in momentum transfer, q.
- \* Expected pattern for spherical particles seen in q.





# Small-angle neutron scattering



Spherical SiO<sub>2</sub> nanoparticles (diameter ~200 nm).

- Sample-to-detector distance of 1666 mm.
- \* Exposure time of 35 min.
- Radial position of peak depends on wavelength but is constant in momentum transfer, q.
- Expected pattern for spherical particles seen in q.



# **Resonance** absorption

- Sheets of In, Ta, Ag, Mo, and Mn.
- Typical area of 10 cm × 10 cm.
- \* Thicknesses from 10 µm to 1 mm.

- Large samples to accumulate statistics quickly (~16 min/sample).
- Good time resolution and background rejection allows us to see resonances near beginning of pulse.



# Resonance imaging



- \* Assorted metals.
- \* DAQ rate of 2.96 MHz (neutron rate of ~30 kHz).
- \* Exposure time of 5.5 min.
- \* <sup>59</sup>Co resonance observed at 90.86  $\pm$  0.23 µs.
- Matches known resonance at 132 eV (TOF of 90.9 μs).





Data taken at NOBORU, J-PARC in Nov. 2009.

# Bragg-edge transmission



- Fe powder (>99% pure, grain size < 325 μm).</p>
- Sample thickness of 1.6 cm.
- DAQ rate of 2.94 MHz (neutron rate of ~30 kHz).
- Exposure time of 40 min.



- Edge spacing is consistent with expected BCC crystal structure.
- Precise measurement of edge positions determines lattice parameter.

Data taken at NOBORU, J-PARC in Feb. 2011.

# Bragg-edge transmission

### $78 \times 40.5 \times 10 \text{ mm}^3 \text{TIG-WELDED}$ 316L STAINLESS STEEL PLATE

### **19 mm**





Edge spacing is consistent with FCC crystal structure.



Data taken at NOBORU, J-PARC in June 2010.

# Bragg-edge transmission



Divide image into  $4.8 \times 4.8 \text{ mm}^2$ 'pixels' and fit edge positions\*.

- Edge positions related to spacing of crystal planes perpendicular to beam.
- \* Variation in position may be related to internal strain.
- Full strain tensor requires measurements from multiple directions.

\* Fit procedure based on Santisteban, et al. (2001)

$$d = \frac{\lambda}{2}$$

d-spacing from wavelength

$$=\frac{d-d_0}{d_0}$$

strain component in beam direction

E



Data taken at NOBORU, J-PARC in June 2010.

### MPGD2011, 30 Aug 2011

# **Future** improvements **\*** Optimization of gas mixture. **\*** Smaller pitch µPIC. **\*** New ASICs and encoder for more compact DAQ.



# Gas optimization and pixel pitch

|                                                               | Pressure<br>(atm) | Drift<br>velocity<br>(µm/ns) | Transverse<br>diffusion<br>(µm/cm <sup>1/2</sup> ) | Longitudinal<br>diffusion<br>(µm/cm <sup>1/2</sup> ) | Expected<br>improvement<br>in resolution |
|---------------------------------------------------------------|-------------------|------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------|
| Ar:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (63:7:30)  | 2                 | 23.1                         | 273                                                | 169                                                  | (118 µm)                                 |
| Ar:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (63:7:30)  | 3                 | 23.4                         | 231                                                | 126                                                  | ~15%                                     |
| Xe:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (50:20:30) | 2                 | 29.4                         | 183                                                | 125                                                  | ~15%                                     |
| Ar:CO <sub>2</sub> : <sup>3</sup> He (50:20:30)               | 2                 | 22.5                         | 107                                                | 114                                                  | ~15%                                     |

Gas parameters determined by MAGBOLTZ. Resolutions estimated with GEANT4.

- Shorten p-t track lengths by increasing pressure or changing to gas with higher stopping power.
- Reduce diffusion of drift electrons.
- Moderate reductions in pixel pitch produce corresponding reduction in position resolution.

### **REDUCE PIXEL PITCH**



# Gas optimization and pixel pitch

|                                                               | Pressure<br>(atm) | Drift<br>velocity<br>(µm/ns) | Transverse<br>diffusion<br>(µm/cm <sup>1/2</sup> ) | Longitudinal<br>diffusion<br>(µm/cm <sup>1/2</sup> ) | Expected<br>improvement<br>in resolution |
|---------------------------------------------------------------|-------------------|------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------|
| Ar:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (63:7:30)  | 2                 | 23.1                         | 273                                                | 169                                                  | (118 µm)                                 |
| Ar:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (63:7:30)  | 3                 | 23.4                         | 231                                                | 126                                                  | ~15%                                     |
| Xe:C <sub>2</sub> H <sub>6</sub> : <sup>3</sup> He (50:20:30) | 2                 | 29.4                         | 183                                                | 125                                                  | ~15%                                     |
| Ar:CO <sub>2</sub> : <sup>3</sup> He (50:20:30)               | 2                 | 22.5                         | 107                                                | 114                                                  | ~15%                                     |

Gas parameters determined by MAGBOLTZ. Resolutions estimated with GEANT4.

- Shorten p-t track lengths by increasing pressure or changing to gas with higher stopping power.
- Reduce diffusion of drift electrons.
- Moderate reductions in pixel pitch produce corresponding reduction in position resolution.

### **REDUCE PIXEL PITCH**



# DAQ improvements



- Replace ASDs with CMOS chips (developed with KEK).
- # 16 channels/chip (increased from 4).
- Power per channel reduced by factor of more than 3.



- \* Combine CMOS chips with FPGA on single board.
- Four boards replace ASD racks, encoder, cables.
- \* Each board writes to memory, increasing max. data rate.
- New boards now under testing (cf. Iwaki, poster 67).



# Summary

- \* TPC based on micro-pattern gaseous detector and FPGA DAQ system.
  - \* Position resolution of 118  $\mu$ m; time resolution of ~1  $\mu$ s.
  - \* Compact DAQ with high data rates.
  - \* Strong rejection of gammas and fast neutrons.
- \* Detector remains operable over long time.
  - \* Annealing to reduce outgassing for increased long-term stability.
  - \* Gas filtration system could extend operation considerably.
- Continuing studies to improve detector performance with aid of GEANT4 simulation.
  - \* Gas mixture and pixel pitch optimization.
- Setting up 20-cm neutron imaging detector for use at Kyoto University.
  - \*  $\mu$ PIC sizes up to 30 × 30 cm<sup>2</sup> are currently available.