Performance of a Neutron Imaging Detector Based on the µPIC Micro-Pixel Gaseous Chamber

Joe Parker Kyoto University

Kyoto University, Cosmic Ray Group J.D. Parker, K. Hattori, S. Iwaki, S. Kabuki, Y. Kishimoto, H. Kubo, S. Kurosawa, K. Miuchi, H. Nishimura, T. Sawano, T. Tanimori, K. Ueno

> Japan Atomic Energy Agency T. Oku, J. Suzuki

Neutron imaging detector prototype (µNID)

- * $10 \times 10 \text{ cm}^2 \mu \text{PIC}.$
- * Gas mixture: $Ar-C_2H_6^{-3}He$ (up to 2 atm total pressure).
- Gas gain < 1000 for neutron imaging.
- Detection efficiency: up to ~30% for thermal neutrons.
- Position resolution: < 0.4 mm; time resolution: ~1 μs (for each neutron event).

DAQ with X-ray mode 8

Test experiments at J-PARC

Test experiments at J-PARC

- * Experiments in Nov. 2009 and June 2010.
- JSNS beam power ~120 kW.
- * Ar(63%)- $C_2H_6(7\%)$ -³He(30%) at 2 atm (detection efficiency ~28%).
- Same gas filling used for both experiments (separated by 8 months).

NOBORU beam line

Beam line

- De-coupled liquid hydrogen moderator at 20 K.
- Max. beam size: 10×10 cm².
- Moderator-to-detector distance: 14.45 m.
- Pulse rate of 25 Hz and neutron band-width of 10 Å.

Neutron pulses and DAQ rate

- Encoder output buffer (limits DAQ rate).
- VME-to-PC data transfer (limits DAQ live time).

- Data rates from 100 kHz ~ 4.5 MHz.
- Live time from 15 ~ 60%.
- External TOF gate to reduce dead time.

Neutron/Gamma separation

- Cuts in total energy deposition and 3D track length.
- * γ/n ratio < 6 × 10⁻⁵ with cuts.

Position resolution with PID

Beam setup

- Slits 1,2: 6 × 6 cm².
- 1-cm Polyethylene degrader.

Position from midpoint of p-t track.

Resolution: 960 ± 105 μm (σ)

Resolution from edge: $349 \pm 36 \mu m (\sigma)$ (Includes beam divergence)

Position resolution

Beam setup

- * Slit 1: 0.3×0.3 cm².
- * Slit 2: 6×6 cm².
- Rotary collimator (1×1 cm²).

200

180

160

140

120

100

80

60

60

Preliminary

100

120

140

 Two 2.54-cm Bi monocrystal filters.

5 cm

0.5 mm

Position resolution from grid

Resonance imaging

Assorted metals DAQ rate: 1.48 MHz Exposure time: 5.5 min

- Known resonance at 132 eV (TOF = 90.9 μs).
- * Observed at 90.86 \pm 0.23 $\mu s.$

Neutrons at resonance energy_ for selective imaging.

Small-angle neutron scattering

Bragg edge transmission

Lattice parameter

* For cubic crystal:

$$a = d_{hkl}\sqrt{h^2 + k^2 + l^2}$$

 Component of strain in beam direction:

$$\varepsilon = rac{a-a_0}{a_0}$$

Summary

- TPC based on micro-pattern gaseous detector and FPGA DAQ system.
 - * Position resolution of ~0.3 mm; time resolution of ~1 μ s.
 - * DAQ with high data rates, external TOF gate.
 - * Strong rejection of background gammas and fast neutrons.
- Third detector test at J-PARC in 2011.
 - * Position resolution with shorter drift cage.
 - * Bragg edge transmission with simpler sample.
- μPIC system is available in 10×10 cm², 20×20 cm², and 30×30 cm².
 - * Second 10-cm system built for JAEA.
 - * Now setting up 20-cm neutron imaging detector for use at Kyoto University.
 - 40×40 cm² system and more compact ASD chips are now under development.
 - * Manufacturing technique allows wide choice in size and shape.