

MeVガンマ線天体観測に向けた電子 飛跡検出型コンプトンカメラ開発

<u>水本哲矢</u>A

谷森達^A、窪秀利^{A, B}、Parker Joseph ^A、水村好貴^A、友野大^A、 岩城智^A、澤野達哉^A、中村輝石^A、松岡佳大^A、古村翔太郎^A、中村祥吾^A、 小田真^A、園田真也^C、身内賢太朗^D、高田淳史^E、岸本祐二^F、株木重人^G、 黒澤俊介^H、田中真伸^{B, I}、池野正弘^{B, I}、内田智久^{B, I}

京大理^A Open-It^B 京大工^C 神戸大理^D 京大生存圏研^E KEK放射線科学センター「東海大医^G 東北大金属研^H KEK素核研^I

日本天文学会2013年秋季年会 東北大学川内北キャンパス 2013年9月11日 W123a

electron track muon track

- ガンマ線がコンプトン散乱
- ・ ガス飛跡検出器 μ-TPC
 ⇒反跳電子の3次元飛跡とエネルギー
- ・ シンチレーションカメラ

⇒散乱ガンマ線の吸収点とエネルギー

光子毎に到来方向、エネルギーを取得 高いバックグラウンド除去性能 広い視野(~3 str)

ガンマ線の再構成

宇宙線µ粒子等のMIPとコンプトン散乱由来の低エネルギーγとはdE/dx分布が異なる

ガンマ線の再構成(¹³⁷Cs zenith 15°

ガンマ線の再構成(複数線源、位置の変更)

カット後

・¹³⁷Cs線源の位置を変えて測定

→到来ガンマ線のzenith方向の変化を確認

·複数の線源を置いて測定(¹³⁷Cs、²²Na、¹³³Ba)

→複数の線源イメージの識別に成功

(30cm)³ETCCの角度分解能

ARMのエネルギー依存性(実測値(緑)と シミュレーション結果(青))

SPDの有効性

反跳電子の反跳方向の情報を用いることで、SPDに応じた円弧状に入射 y 線の 到来方向を決定することができる。

上段: リングを重ね合わせた場合 (Legacy Compton) 下段: 円弧を重ね合わせた場合 SPD=200°としている。 (Advanced Compton)

COMPTELにより観測された γ 線バースト (GRB910505)のイメージにSMILE ETCCで測 定した場合のイメージ予想を重ねたもの

電子の反跳方向がわかるため、SPDを考慮できる。 →SPDを考慮することで高コントラストのイメージ が描ける。

検出効率、今後のSMILE計画に向けて

シミュレーションと測定のEfficiencyが よく一致、エネルギー依存性がよく再 現できている。

→シミュレーションにより検出器の性 能の正確な予想が可能になった

検出効率のエネルギー依存性 (GSOシンチレータアレイは底面のみで計算)

今後のSMILE計画に向けた検出器の検討項目

- ・ シミュレーションで最適なガスの種類、
 ガス圧を計算、実機で確かめる
 →さらなる検出効率の向上を目指す
- TPCをプラスチックシンチレータで囲む、
 GSOシンチレータの厚みを増やす等の検討
 →より高エネルギーまで測定できるようにする。

まとめ

- ・ Effective Areaを目標の~1cm²を達成
- 662keVでの角度分解能ARM~5.3°
- SPD~93°(世界最高)
- ・コンプトン散乱事象を100%検出可能になった
 →シミュレーションと一致するようになった
- ・ dE/dxカットで連続ガンマに有効な雑音除去が可能
- ・ 良いSPDにより画質の良いイメージングが可能になった
- ・ガス種、ガス圧の調整で~10cm²以上の可能性が出た