

Precise Low-Energy Electron Tracking Using a Gaseous Time Projection Chamber for the Balloon-Borne Gamma Ray Compton Telescope

<u>T. Mizumoto</u>, T. Tanimori, H. Kubo, A. Takada, J. D. Parker, S. Sonoda, Y. Mizumura, D. Tomono, T. Sawano, K. Nakamura, Y. Matsuoka, S. Komura, Y. Sato, S. Nakamura, K. Miuchi, S. Kabuki, Y. Kishimoto, S. Kurosawa, S. Iwaki, M. Tanaka, M. Ikeno, T. Uchida

Contents

- i. MeV gamma ray astronomy
- ii. Electron Tracking Compton Camera and SMILE-II
- iii. New DAQ system for SMILE-II ETCC
- iv. Performances of SMILE-II flight model ETCC

2013 IEEE Nuclear Science Symposium, October 29, 2013 @ COEX, Seoul, Korea, N10-2

Motivation (sub-MeV/MeV gamma-ray astronomy)

Nucleosynthesis

SNR : Radio-isotopes Galactic plane : ²⁶Al·⁶⁰Fe Annihilation

Acceleration

GRB, Jet (AGN) : Synchrotron + Inverse Compton

 Strong Gravitational Potential Black Hole : accretion disk, π⁰

≻ Etc.

Gamma-ray Pulsar, solar flare

- The observation of continuum component is important.
- Where are MeV gamma-ray objects?
- There are many background events which obstruct the observations.

Requirements for the next-generation detectors are ...

- Wide-band detection
- Large Field of View
- Background rejection

Electron Tracking Compton Camera (ETCC) for SMILE

μ-ΤΡС

1 m

Schematic of ETCC (left) and photograph of flight model ETCC for SMILE-II experiment (right)

Example TPC data of SMILE-II ETCC with new readout board

TPC 3D reconstructed track (SMILE-II ETCC)

TPC 3D reconstructed hit data (SMILE-I ETCC)

Changed saving method of TPC hit data →particle tracks are clearer than ever We can detect recoil electrons perfectly

Example data of SMILE-II ETCC with new DAQ system

We can reconstruct the incident gamma rays by using the scattering point, direction and gamma ray energy, recoil direction and electron energy event by event.

Performances of SMILE-II FM ETCC

Since we can detect almost all scattered electrons, the measured efficiency is similar to the simulated one.

effective area 10cm² -> reach the efficiency of COMPTEL

x [mm]

Measurement in the environment of high background level (@RCNP Osaka Univ.)

Date 2013/10/17 trigger rate : 16.2 kHz data saving event rate : 394 Hz Dead Time : 59.6% ¹³⁷Cs: 0.84 MBg

Track range vs energy (dE/dx)

target

ETCC

proton beam

Conclusion

- We have been developing the flight model (30 cm)³ ETCC for SMILE-II experiment.
- Since we changed the algorithm for taking track hit data of μ -TPC, hit number per event is increased, and almost all recoil electron can be taken.
- From the result of the simulation, we can achieve the efficiency 10 times higher than the present one by changing the gas species and pressure of the TPC.
- For SMILE-II ETCC, we confirmed the detector operates correctly in the high background rate.

Fin

My colleagues S. Komura, NPO2-122, Performance Improvement of an Electron-Tracking Compton Camera by a New Track Reconstruction

- S. Sonoda, M12–10, The Performance Evaluation of the Electron Tracking Compton Camera
- D. Tomono, N28-2, First Application to Environmental Gamma-Ray Imaging with an Electron Tracking Compton Camera