SMILE22 電子飛跡検出型コンプトンカメラ (ETCC)の気球実験に向けた開発状況

京都大学 宮本奨平

谷森達, 窪秀利, 高田淳史, Parker Joseph, 水村好貴, 水本哲矢, 園田真也, 友野大, 岩城智, 澤野達哉, 中村輝石, 松岡佳大, 古村翔太郎, 中村祥吾, 岸本哲朗, 小田真, 竹村泰斗, 身内賢太朗(神戸大学) 1. 電子飛跡検出型コンプトンカメラ(ETCC)の開発状況
 2. TOT補正を用いた電子飛跡解析の改良方法
 3. TOT補正を用いた電子飛跡解析の改良結果
 4. まとめと今後の展望

電子飛跡検出型コンプトンカメラ(ETCC)の開発 Electron-Tracking Compton Camera

TOT補正を用いた電子飛跡解析の改良方法 SPDの導入によるイメージの向上

角度分解能の定義

ARM:入射 γ線の散乱角の角度分解能 SPD:反跳電子の散乱平面の決定精度

4

TOT補正を用いた電子飛跡解析の改良方法 5 飛跡解析の課題

電子飛跡解析に改良の余地がある

飛跡情報は2次元ストリップ読み出し 課題→横方向に走った飛跡や短い飛跡は直方体状に再構成される →散乱点、散乱方向の決定精度が悪くなる anode cathode 再構成された飛跡 threshold **clock** 20 30(cm) TOT 30(cm) time coincidence 30(cm) TOT 30(cm) Cathode (Time Over Threshold) Anode strip²⁰ 30(cm) 0 10 10 20 30(cm) 0 0 strip Time walkを補正(TOT補正) TOT補正有り TOT補正無し(従来解析) Anode Anode ~6 cm 920 TOT 910 900 890 880 870 860 860 860 910Ē 380 **TOT補正** 380 370 C 360 360 350 340 33 370 370 360 95 100 105 110 115 120 125 130 135 Cathole 95 100 105 110 115 120 125 130 340 Anode Anode 330

TOT補正を用いた飛跡解析の改良結果 ¹³⁷Cs (662 keV)を測定した時のガンマ線到来方向の分布

飛跡解析の改良で 電子の散乱方向の 決定精度がよくなったので イメージの集中度が上がった

TOT補正を用いた飛跡解析の改良結果 8 3つの¹³⁷Cs線源(662 keV)をETCCで測定した時の検出有意度マップ

従来の解析方法の約1.6倍 @ 662 keV改善 電子飛跡使用しないコンプトン法の4~6倍 @ 662 keV

まとめと展望

まとめ

- 現在のETCCの性能
 有効面積: 0.7 cm² @ 300 keV
 角度分解能: 5.3^o @ 662 keV
 TOT補正を用いて電子恐時解析方法を改良
- TOT補正を用いて電子飛跡解析方法を改良 FWHMでSPDが200°から70°~100°@視野中心、662 keV

検出有意度が 従来のETCC法の約1.6倍 @ 662 keV改善 従来のコンプトン法の約4~6倍 @ 662 keV改善

かに星雲を5~8 σで撮像可能 (高度40 km、4時間)

今後の展望

・ コンプトン散乱点の決定方法の改良 SPDおよびARMが原理限界に近づくと期待できる

ARM、SPD導出原理

$$\vec{s}_{rcs} = \left(\cos\phi - \frac{\sin\phi}{\tan\alpha}\right)\vec{g} + \frac{\sin\phi}{\sin\alpha}\vec{e},$$

$$= \frac{E_{\gamma}}{E_{\gamma} + K_{e}}\vec{g} + \frac{\sqrt{K_{e}(K_{e} + 2m_{e}c^{2})}}{E_{\gamma} + K_{e}}\vec{e}.$$

$$\vec{\lambda}$$

$$\vec{s}, E_{0}$$

$$\psi$$

$$\vec{g}, E_{\gamma}$$

$$\vec{g}, E_{\gamma}$$

11

TOT補正を用いた電子飛跡解析の改良方法 12

SPDの電子エネルギー依存性

TOT 補正を用いた飛跡解析の効果 3つのCs137線源(662 keV)をETCCで測定した時の検出有意度マップ

TOT補正を用いた飛跡解析の効果 線源Cs137(662 keV)を天頂角を変えて測定した時のSPDの値

15

散乱点の決め方

電子飛跡をxy平面に射影し 散乱ガンマ線の吸収点の一番近く

