方向に感度のあるWIMP直接探索実験 NEWAGE_{(New generation WIMP search}

with an advanced gaseous tracker experiment)

@GALAXY

京大理·宇宙線 身内賢太朗十西村 広展 谷森達 窪秀利 土屋兼一株木重人 高田淳史 服部香里上野一樹 黒澤俊介 井田知宏 岩城智 竹田敦(ICRR) 関谷洋之(ICRR)

@EARTH "WIND" of WIMPs miroTPC

P.V. available at

http://www-cr.scphys.kyoto-u.ac.jp/research/mu-PIC/NEWAGE/newage_e.htm 2007年9月30日

1、全体像(身内) PLB 578 (2004) 241 2、地上実験(身内) PLB 654 (2007) 58 3、地下実験(西村)

Direction Sensitive WIMP-search NEWAGE

2007年9月30日

↔ 究極的な目標:

暗黒物質の「風」を検出

さらには

2007年9月30日

方向に感度をもった暗黒物質探索 提唱:20年前 Spergel et.al. PRD37 (1988) 1353 モチベーションは「確実な検出」

方向に感度をもった暗黒物質探索 提唱:20年前 Spergel et.al. PRD37 (1988) 1353

 DAMAや東大みのわ研のスチルベン実験 方向に感度のある
 結晶の異方性で7%程度光量がかわる
 Bernabei et.al. Eur Phys J. C 28 (2003) 203 Sekiya IDM2004 pp378

ちなみにIDM2008は2008年8月@ストックホルムにて

低圧力ガスを用いた飛跡検出 PRL73(1994)1067
 DRIFT実験(英) 10年以上R&D
 なにが難しいか:
 1/50気圧のガス 5mm程度の飛跡

● 最近の動向 国際ワークショップCYGNUS07などでの

http://www.pppa.group.shef.ac.uk/cygnus2007/ 2007年9月30日 WIMP-search

+ DRIFT実験(大先輩)

DRIFT IIa design & dimensions

2007年9月

Exeter 07/06/07

- 1 m³ active volume back to back MWPCs
- Gas fill 40 Torr CS₂ => 167 g of target gas
- 2 mm pitch anode wires left and right
- Grid wires read out for ∆y measurement
- Veto regions ピッチが少々荒い
- Central cath 3次元飛跡が取りずらい diameter wires at 2 mm pitch
- Drift field 624 V/cm
- Modular design for modest scale-up

Neil Spooner - Sheffield

項目	DRIFT	NEWAGE
検出器ピッチ	2mm	0.4mm
読み出し方法	1+1+1 次元(MWPC) (3次元飛跡検出研究中)	2+1 次元(µPIC) (3次元飛跡検出実績あり)
使用ガス(現行)	CS2 (スピン依存しない カップリングを探れる)	CF4 (スピン依存のカップリングを探る。 飛跡検出器の性能は良い)
サイズ(現行)	1m角(170g)	30cm角(10g)
暗黒物質実験	未	やりました
開発	1990年代前半	2002~
地下実験	2001~	2007~

Direction Sensitive WIMP-search NEWAGE

2007年9月30日

これから3年で60cm角TPCを製作予定

最後は100m³以上の装置 (例えば10×10×3m³)で観測を

Direction Sensitive WIMP-search

2007年9月30日

◆ XMASSとの比較 (2) ● 検出感度: XMASS 1t ⇔ NEWAGE 1kg

容積: Liq Xe 1tの安全バッファー ~ 170m³ CF₄ ガス(30 torr)F 1kg ~ 7.5m³

Complementary

Comparable

Direction Sensitive WIMP-search NEWAGE

2007年9月30日

◆ という風に

大先輩DRIFT とか 巨艦XMASS とかに

一方的に挑んだのが2004年秋の学会

それから3年後、のはなし

Direction Sensitive WIMP-search **VEWAGE**

2007年9月30日

2. 地上実験 + ちょっとだけ検出器µPIC(「谷森detector」)

◆ 3次元飛跡をとる仕組み
 ●「TPC」: 一般的な手法
 +独自の「パイプライン方式」

Direction Sensitive

NEWAGE

WIMP-search

ガス検出器の特徴
 原子核の飛跡検出(3次元)
 ガンマ線バックグラウンド排除

Direction Sensitive WIMP-search NEWAGE

2007年9月30日

+ 飛跡検出、イメージング

- ・中性子に反跳された陽子を検出
- 前方に 散乱される様子が見えている
 WIMP→フッ素の反跳で見たい現象をエ ミュレート

100keV以上では 99.98%以上の除去力

◆ その他、検出器の性能 @100keV (まだまだ発展途上)

- エネルギー分解能 70%FWHM
- 位置分解能 800µm
- 角度分解能 25%HWHM
- 原子核飛跡検出効率 40%

◆ 地上でのDM探索実験 ● (悪いのは承知で)とにかく制限をつけれることを示す ● 原子核飛跡を用いた手法では初めて • 2006 年11月1日~11月27日 exposure 0.15 kg days • @京大 (北緯35.03 東経135.783) • シールドなし 300 得られた

• 方向に感度を持った解析

- ・原子核飛跡で描いた半天マップ(左が生 右が検出器応答を考慮したもの)
- ・検出器応答を考慮すると、地上での等方的な中性子BGが見えている。
- ・ピンクが「CYGNUS」方向

North sky view seen by C and F nuclei (100-400keV)

DATA

simlation

そして地下実験へ(西村)

NEWAGE ~神岡地下実験報告~

2007年9月29、30日 暗黒物質と銀河構造 於 ウェルサンピア伊勢 京都大学 理学研究科 西村 広展 谷森達, 窪秀利,身内賢太朗,土屋兼一,株木重人,高田淳史, 服部香里,上野一樹,黒澤俊介,井田知宏,岩城智

NEWAGE @ 神岡

•神岡鉱山 •2700m w.e depth

目的 •安定動作確認•Background Study

旧重力波実験室 旧(?)蓑輪研実験室 を利用

検出器の搬入・組み立て

+ 1/16 搬入

+ 1/19 測定開始

8人•days

Stability(BGrun2) Gas gain &DAQ rate: ゆるやかな落ち込み 10%~20% / month →解析時に補正可能 →ガス入れ替えで復活

地上よりは少ないけどまだまだある。→検出器起源

Background排除能力について(現状)

◆荷電粒子線 Fiducial cut により横方向からのものは排除 内部発生及び上下方向からは排除不可 ↔ γ線・β線 dE/dxの違いにより排除可能。 ↔ 中性子 排除不可能。WIMPイベントと弁別負荷 ただし Surface : mine ~ 1:10⁻³

BG源 U, Th

Rn 成分(3.8days) BG中の6MeV近辺のピークがガス入れ替え時より 3.8日の時定数で増大

他に原因があるかもしれませんが。。 現在、具体的数値を見積もり中

Background対策(これから)

 Chamber内のα線
 Rn → フィルターにより除去 →U、Thを含む部品の削減
 天井と床(Drift plane とGEM) →U、Thの削減

→どちらもz方向の絶対値がわかれば排除可能?

BGが2桁3桁落ちれば、 ◆ 環境中性子 ● ポリエチレン壁でshield

まとめ

NEWAGE 30cmサイズ 基本開発完了 ・地上試験 完了 → 地下でのR&Dへ。

- ◆ 地下R&D
 - 安定動作の確認
 - 内部BGの確認
 - 暗黒物質探索実験の仲間入り??
- → 大型化(本格探索)にむけ
 - BGの低減が重要。
 Rn・U・Th除去 Z方向測定
 - 低圧動作
 - Head-Tail 判別

U、Th 系列による低エネルギー成分1

VETOがない領域へのα線抜け(主にRn崩壊)

Fiducial内に一部の エネルギーを落とし外部に

+ VETOがない領域からのα線(主に天井から)

外部である程度エネルギーを落としてから内部に。

U、Th 系列による低エネルギー成分2

Radon Progeny Recoils

 α Range = 14 μ m

Pbイオンのエネルギー は100~150keV。

異種ガスによる環境BGの測定

◆ ³He、H等を混ぜれば中性子検出感度up

中性子BGモニターとして使用可 神岡坑内での測定計画中

²²²Rn emanation and alpha from drift plane

10 12 14 16 18 20

TPC performance tracking Neutron response Preprints

Preprints: physics/070118 K.Miuchi et.al

TPC performance (with Ar+C2H6 gas) Gas gains

operation gain for MIPs ~50,000

n

0 8 6 4 0 -2 -4 -6 -8

Gain map

-5

-10

anode[cm] 5

Sensitivity to WIMPs

Properties of μ TPC

Track length threshold : 3 mm dE/dx threshold : 10 keV/cm with electron/nuclear recoil discrimination ability recoil direction sensitivity (Bragg curves)

Need to study

low-pressure μ TPC

Sensitivity to WIMPs

"Detection" by Forward/Backward 3σ asymmetry

At Kamioka Observatory (1000 m.w.e)

検出器応答

- ガラスに蒸着した¹⁰B (厚さ0.6µm)
- ・ドリフトケージ内部にセット、外から252Cfの中性子を減速して照射
- ・10B(n,a)7Li 反応 (Q=2.70MeV 1.8MeV for α)
- ・原子核による校正、低エネルギーへの線形性は別途確認示す必要あり
- ・現状では、校正には6時間程度、見せれる絵には12時間程度かかっている

micro-TPC principle

Gas volume

- DRIFT length 31cm
- CF4 0.2bar gas, sealed

• μ-PIC (gas gain 2000) Takada et. al. NIM

- Micro pixel chamber
- 589,824 pixels 400µm pitch
- 768+768 readout

cf.F.Sauli • GEM (gas gain 1~2) Gas electron multiplier • 23cm × 28cm

TPC performance tracking

•Example Gas CF₄ 0.2bar **Alpha-Particle Event** Nhit=18 Energy=6.5MeV Length=10.2cm

3D spatial resolution ~ 800µm cf. F(100keV) run 800µm

10 15

40

Z (cm)

Detect both Track and Energy!

 TPC performance direction
 CF₄+C₄H₁₀ (9:1) 0.2bar
 Protons have longer tracks

 n -> p forward scattering are seen (this is what we want to do with WIMP -> F scatterings)

gamma efficiency < 2e-4 (statistics limited) >100 keV

+1月 2名×4日 + 2月 1名×5日 1名×1日 ◆ 3月 2名×3日 ◆ 4月 1名×4日 ◆ 5月 1名×5日 2名×2日 ◆ 6月 1名×2日 ◆7月 1名×2日