Experiment of the 30 cm-cube ETCC under the Intense Radiations with Proton Beam

Y. Matsuoka

- T. Tanimori, H. Kubo, A. Takada, J. D. Parker,
- T. Mizumoto, Y. Mizumura, S. Sonoda, D. Tomono, S. Iwaki,
- T. Sawano, K. Nakamura, S. Komura, S. Nakamura,
- T. Kishimoto, M.Oda, T. Takemura, S. Miyamoto (Kyoto Univ.)

& S. Kurosawa (Tohoku Univ.)

Contents

- Compton Camera for MeV gamma-ray
- ETCC (Electron-Tracking Compton Camera) and SMILE project
- Performances of 30 cm-cube ETCC
- Experiment under the intense radiations

MeV gamma-ray astronomy

Detection sensitivity

In the MeV region

- Unclearness of image
- Wide sensitivity gap

What is the main reason of these problems?

Difficulty of MeV gamma-ray

G. Weidenspointner+ (A&A, 2001)

Electron-Tracking Compton Camera (ETCC)

Comparison with the usual Compton method

Balloon Experiment with ETCC (SMILE)

Performance (Effective area, Angular res.)

- ✓ SMILE-II ~1 cm² @ 300 keV
- ✓ Experiment ≈ Simulation
 - => ETCC obtains ~100 % of Compton events.
- ✓ We will upgrade to SMILE-III $\sim 10 \text{ cm}^2$

Satisfied the requirements for Crab detection.

Experiment with proton beam @RCNP

Confirmation of background rejection power

Imaging of ¹³⁷Cs(662 keV)

DAQ (Data acquisition) rate

DAQ Rate

SMILE-I (32-35 km)	10 - 40 Hz
SMILE-II (expected)	100 - 400 Hz
@RCNP	300 - 1000 Hz
Data Trans. Limit	< 1000 Hz

DAQ Improvements

- ✓ Speed up the Data transfer rate
 - DAQ CPU upgrade x 2
- ✓ Reduction of the Data
 - Selection and compression x 2 3

Dead-Time can be reduced to < 20 % @ ~ 400 Hz

Detection sensitivity

Summary

- High contrast imaging
- ETCC has
 Powerful background rejection
 with electron-track and dE/dX selection
- ≻SMILE-II ETCC has
 - Effective Area $\sim 1 \text{ cm}^2$ @ 300 keVAngular Resolution 5.3° @ 662 keV
 - ✓ satisfied the requirements for Crab detection
 - (Fort Sumner @ middle latitude, several hours at 40 km)
- Experiment with Proton Beam
 Intense radiations are available (5 times than balloon altitude)
 ETCC can clearly separate Compton-electron from neutrons
 ✓ ETCC maintains its sensitivity in high background

Thank you for your attention!