µPICを用いた 30cm角TPCの性能評価

松岡佳大

谷森達, 窪秀利, Parker Joseph, 水本哲矢, 水村好貴, 岩 城智, 澤野達哉, 中村輝石, 古村翔太郎, 佐藤快, 中村祥吾, 身内賢太朗^B, 高田淳史^C, 岸本祐二^D, 上野一樹^E, 株木重 人^F, 黒澤俊介^G, 田中真伸^{A,E}, 池野正弘^{A,E}, 内田智久^{A,E}

京大理, Open-It^A, 神戸大理^B, 京大生存圏研^C, KEK放射線 科学センター^D, KEK素核研^E, 東海大医^F, 東北大金属研^G

- 内容 ETCCとSMILE計画
 - 30cm角 µ-TPC
 - 新アルゴリズムよるETCC
 - まとめと今後

Sub MeV – MeV ガンマ線天文学

感

度

Photo

keV

erg/cm²/s

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

 10^{-14}

10⁻¹⁵

10⁻¹⁶

Δθ

ΔΩ

 $10^{3} eV 10^{4}$

Absorption

Compton

10⁶

MeV

10⁵

integral IBIS

CHANDRA, NEWTON

1"~1'

Pointing

~**1**°

All Sky

Pair Creation

COMPTEL

< 1°~ 0.1

All Sky

現在までのMeV近傍の観測感度

10⁸

10⁹

GeV

EGRET

< 0.1

All Sky

Fermi

10¹⁰ 10¹¹

10¹²

TeV

MAGIC

H.E.S.S

 $< 0.1^{\circ}$

Pointing

10⁷

天文学的意義
□宇宙線起源
□宇宙線加速
□ガンマ線バースト(GRB)
□元素合成(²⁶Al, ⁵⁶Co)
□π⁰崩壊

地球物理学的意義

- 放射線帯でのMeV領域までの電子加速
- □ 相対論的電子降下(REP)の 大気イオンへの影響や制動 放射(REP-burst)

ETCC(Electron Tracking Compton Camera)

SMILE (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment)

2006年9月 SMILE-I @三陸

目的:動作実証 成功

・(10cm)³ETCCを使用

・レベルフライト4時間@高度35km

・宇宙拡散・大気γ線を測定(約400光子)

2013年~ SMILE-II @キルナ

大型(30cm)³ETCCを使用 目的:明るい天体(Crabなど)の観測 極域での長時間観測

(30cm)³ETCCプロトタイプ

今年3月まで大型ETCCとして試験運用 □ 側面シンチレータの増設 □ μ-PICの倍ピッチ読出しによる省電力化 などの動作を確認後、フライトモデル構築 へ向け解体

30cm角µ-TPC フライトモデル

散乱γ線の検出器以外での散乱・吸 収による損失は20-30%@300keV

容器材質	柱密度(g/cm2)
アルミ製プロトタイプ(>8mm)	>2.16
アルミハニカム(3mm厚相当)	0.82

フライトモデルETCCの構成 µ-TPC Ar:CF₄:iso-C₄H₁₀(95:3:2) 1~1.3atm封じ切り 30cm x 30cm x 30cm Pixel Pitch : 400µm 2ストリップまとめ読み出し Anode 384本 + Cathode 384本 シンチレータアレイ GSO; Ce 6x6x13mm³ 総Pixel 6912 エレクトロニクス 新 DAQの 構築 水本講演 読み出し基板の開発

気球実験に向け 高検出効率 省電力化

30cm角µ-TPC セットアップ

30cm µ-PIC 30cm角 400µm pitch

GEM 31 x 32cm 100µm厚(LCP)

30cm ドリフトケージ

新飛跡	取得アルゴリズムに	:よ	SETCC
■10cm角T → 飛跡の ■今回:10c	PCの性能評価 取りこぼし等、改善 (MPGD2011、古村講演) m角ETCCでの動作試験	50cm €>	、 線源 ¹³⁷ Cs Z
→ ◇コン ◇検 と	・プトンイベントの取得性能 出効率	14.5cm	電子雲
Volume	$10 \times 10 \times 14.5 \text{ cm}^3$		
GEM	LCP 50µm 1枚	∧	
Induction Field	4mm (E _I 1.3kV/cm)	4cm	
HV	Anode 430V, ΔGEM 300V Drift電場 170V/cm		
Gas	Ar 90% C ₂ H ₆ 10% 1atm		18cm
Gain	~ 20,000	シ: カ:	ンチレーション DAQ メラ トリガー

□ノイズにより、電子の飛距離が長めに解析されていた より確実に反跳電子の飛跡を取得することに成功

まとめと今後

□ SMILEでの30cm角µ-TPCの立上げ

- 新しい読出し基板による信号の取得を確認
- 新アルゴリズムでの飛跡取得を確認
- □ 新飛跡取得アルゴリズムによるETCC
 - 10cm角ETCCにおいて、検出効率の改善(10倍)
- シミュレーションとの程度のいい一致
 □ 30cm角ETCCの立上げ
 - シミュレーションでは 1cm²@300keV
 - DAQシステムとしてデータ取得は確認
 - 今後、測定結果とシミュレーションを比較

ご清聴ありがとうございました。

