Development of a Compton gamma-ray camera with LaBr₃(Ce) pixellated arrays for medical imaging Shunsuke KUROSAWA

K. Hattori, C. Ida, S. Iwaki, N. Higashi, S. Kabuki, H. Kubo, K. Miuchi, K. Nakamura, H. Nishimura, J. Parker, T. Sawano, A. Takada^A, M. Takahashi, T. Tanimori, K. Taniue, K. Ueno, Y. Yanagida^B

Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan

^AISAS / JAXA, Kanagawa, Japan

^BWorld Engineering System, Kyoto, Japan SCINT2009 June 8, 2009 @ Lotte Hotel Jeju, Jeju, Korea

Contents

- Introduction
 - Electron Tracking Compton Camera (ETCC) for Medical imaging
- LaBr₃(Ce) array
 - Assembly of LaBr₃(Ce)
 - Measurement of a LaBr₃(Ce) array
- ETCC with LaBr₃(Ce) arrays
 - Setup
 - Imaging with the camera
- Summary

Medical imaging (functional image)

PET : E = 511keV SPECT : E < 360keV Narrow

Wide dynamic energy range

New radioactive tracer with new radioisotopes

It is possible that we obtain various images: anti-body, enzyme, protein reaction

Multi-radioisotope Imaging With wide energy range

Simultaneous observation of some metabolisms and interactions

	¹³⁹ Ce	¹³³ Ba	131	¹⁹⁸ Au	²² Na	¹⁸ F	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co
E [keV]	167	354	364	412	511 1275	511	835	1116	1173 1333

Electron Tracking Compton Camera

 Large FOV (~3str)
 Kinematical background rejection by comparison of two α angles

Reconstruct incident gamma ray event by event

Energy dynamic range: from 0.1 to ~1 MeV

To obtain a higher angular resolution Angular resolution of the Compton camera depends on the energy resolution of scintillator

Loef et al. (2001)

Assembly of LaBr₃(Ce) array

Using our technique, we cut $5.8 \times 5.8 \times 15.0$ mm³ pixels out of two $\phi 38 \times 38$ mm³ LaBr₃ crystals and assembled an 8×8 array.

Saint-Gobain BrilLanCe380 Size: ϕ 38×38mm³ Eng. Res.: ~3 % (FWHM, @ 662 keV, using HPK R6231)

1/2 attenuation length @662keV LaBr₃ (Ce): 18 mm Effective area : 49 × 49 mm² (=PMT photocathode) Glass window : Quartz (t 2.3 mm) Hermetic package : Aluminum (t 0.5 mm)

4ch readout with multi-anode PMT

Flood field irradiation image using a Charge-division method

FWHM Eng. Res. @ 662 keV Ave. $\pm \sigma$: 5.8 \pm 0.9%

FWHM(%)= (5.7±0.4) ×(E/662keV)^{-0.53±0.01}

9 arrays: Energy Resolutions (FWHM) @ 662keV

Eng. Res. (FWHM) @ 662 keV Ave. $\pm \sigma$: 6.0 \pm 1.0% (15mm-thickness)

 $5.6 \pm 0.8\%$ (20mm-thickness)

5.8±0.9% (Total, 576 pixels)

Setup of ETCC

Mouse imaging131I-MIBG (365keV)65Zn2+ (1116keV)Imaging (ETCC & CT)Imaging (ETCC & photo)

¹³¹I-MIBG (365keV) & ¹⁸F-FDG (511keV) imaging

The clinical drugs ¹⁸F-FDG (PET) and ¹³¹I-MIBG (SPECT) can image the MRMT1 (mammary tumor) and PC12 (Pheochromocytoma)

Summary

- we assembled an 8 × 8 LaBr₃(Ce) pixel array.
 Pixel size : 5.8 × 5.8 × 15 mm³
 5.8 × 5.8 × 20 mm³
 - Pixel pitch: 6.1mm (the same as that of the multianode PMT H8500)
- Dynamic energy range: 80 about 1000 keV.
- Energy resolutions of the array with the MAPMT (FWHM、@662keV).

 $-5.8 \pm 0.9\%$ (average of 9 arrays)

- Angular resolution of ETCC (FWHM, @662keV). -4.2 ± 0.3 deg.
- We observed mouse imaging:
 - High energy isotope : ⁶⁵Zn²⁺ (1116keV)
 - ¹³¹I-MIBG (365keV) & ¹⁸F-FDG (511keV) Simultaneously

감사합니다