Development of an 8 × 8 array of LaBr₃(Ce) scintillator pixels for a gaseous Compton gamma-ray camera

TIPP09 @ Epocal Tsukuba, Tsukuba, Japan. (2009.3.14)

Shunsuke KUROSAWA

K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, K. Miuchi, H. Nishimura, J. Parker, A. Takada, M. Takahashi, T. Tanimori, K. Ueno, Y. Yanagida^A

Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan ^AWorld Engineering System, Kyoto, Japan

Contents

- Introduction
 - Compton gamma-ray Camera
- LaBr₃(Ce) array
 - Property of LaBr₃(Ce)
 - Measurement of a monolithic LaBr₃(Ce)
 - Measurement of a LaBr₃(Ce) array
- Compton Camera with LaBr₃ arrays
 - Gaseous TPC
 - Imaging with the camera
- Summary

Compton gamma camera

Camera is used for astronomy (Ueno's poster id=17), and medical imaging (Kabuki's talk id=30).

 Large FOV (~3str)
Kinematical background rejection by comparison of two α angles

Reconstruct incident gamma ray event by event

To obtain a higher angular resolution Angular resolution of the Compton camera depends on the energy resolution of scintillator

Property of scintillators

	Density (g/cm ³)	Decay time constant (ns)	Light output (Relative)	Hydroscopic	Radiation Hardness
Nal(TI)	3.67	230	100	Strong	very weak
CsI(TI)	4.53	1050	85	Weak	very weak
BGO	7.13	300	7-12	No	weak
LSO	7.4	40	40-75	No	strong
YSO	4.45	40	30-45	No	strong
PWO	8.2	~3/<40	26/4	No	strong
GSO(Ce)	6.71	30~60	18	No	strong
LaBr ₃ (Ce)	5.3	20	160	strong	strong

LaBr₃(Ce) scintillator

Loef *et al.,* (2000), Drozdowski *et al.* (2007) M. Moszyńsk *et al.* (2006)

spectrum : Shah *et al.* (2003) Q. E. : Hamamatsu catalog

LaBr₃(Ce) scintillator

Energy resolution measured with a singleanode PMT (SAPMT) (HPK R6231)

Naked LaBr₃ pixel

Test of our cutting & polishing technique

Saint-Gobain BrilLanCe380 Size:¢38×38mm³

Size: 6×5×14mm³ pixel glass window : none Hermetic package : none

Put the crystal on single anode PMT (R6231) directly under the dry condition

Energy resolution (FWHM) 4.5 \pm 0.1% @ 356 keV 3.5 \pm 0.1% @ 662 keV

Assembly of LaBr₃(Ce) array

Using our technique, we cut $5.8 \times 5.8 \times 15.0$ mm³ pixels out of two $\phi 38 \times 38$ mm³ LaBr₃ crystals and assembled an 8×8 array.

Saint-Gobain BrilLanCe380 Size:\ophi38×38mm³

1/2 attenuation length @662keV LaBr₃ (Ce): 18 mm Effective area : 49 × 49 mm² (=PMT photocathode) Glass window : Quartz (t 2.3 mm) Hermetic package : Aluminum (t 0.5 mm)

6.1 mm pitch

54mm

20mm

Performance of each pixel

To estimate the performance without the effect of gain uniformity (~3) among 64 anodes of Multi-Anode PMT (H8500)

Readout with H8500

LaBr₃ array MAPMT HPK H8500

Readout of an array camera

Image and energy spectrum

Flood field irradiation image

Energy resolution (FWHM) of each pixel @ 662 keV (137Cs)

Energy resolution vs. energy

array: FWHM(%)=(5.7 \pm 0.4) ×(E/662keV)^{-0.52 \pm 0.01}

15mm-thickness array

Energy Resolution (FWHM) @ 662keV (1) $5.8 \pm 0.9 \%$ (2) $6.4 \pm 1.2 \%$ (3) $6.0 \pm 0.8 \%$ (4) $5.8 \pm 0.8 \%$ (5) $5.5 \pm 0.8 \%$

LaBr₃ arrays

Energy resolution (FWHM) [%]

(2)

662 keV

Gaseous TPC

Size: $10 \times 10 \times 10 \text{ cm}^3$ Gas: Ar+C₂H₆ 1atm Drift: FPGA 100MHz clock Gain: ~30,000 (GEM gain : ~10) Position Resolution (FWHM): drift direction ~ 0.6 mm horizontal plane ~ 0.4 mm

2-D gaseous detector
Size: 10 cm x 10 cm
65,000 pixels
Gas gain: < ~6,000
(stable driving more than 1 month)

Setup of a Compton camera

Angular resolution

Measured by point sources

Performance of a Compton camera

summary

- In order to improve the angular resolution of Compton Camera, we assembled an 8 × 8 LaBr₃ pixel array.
 - Pixel size : 5.8 \times 5.8 \times 15 mm³
 - Pixel pitch: 6.1mm (the same as that of MAPMT H8500)
 - Package size : 54 \times 54 \times 20 mm³
- Dynamic range: 80 1000 keV
- Energy resolution of the array with MAPMT (FWHM、@662keV)
 - $LaBr_3 array 5.8 \pm 0.9 \%$
 - $\text{ GSO array} \qquad 10.8 \pm 1.0 \%$
- Angular resolution of gamma camera (FWHM, @ 662 keV)
 - With LaBr₃ array 4.2 ± 0.3 deg.
 - With GSO array 6.4 ± 0.2 deg.
- Future work
 - LaBr₃ array: Individual readout system for each anode channel.
 - TPC: Improve accuracy of electron tracking (cf. Hattori's poster id=85)

Thank you for your attention