Development of an 8 × 8 array of LaBr₃(Ce) pixels with a multianode PMT for a gaseous Compton gamma-ray camera

Shunsuke KUROSAWA

K. Hattori, C. Ida, S. Iwaki, S. Kabuki, H. Kubo, K. Miuchi, H. Nishimura, A. Takada, T. Tanimori, K. Ueno, Y. Yanagida^A

Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan ^AWorld Engineering System, Kyoto, Japan

Contents

- Introduction
 - Compton gamma-ray Camera
- LaBr₃ array
- Compton Camera with LaBr₃ array
- Summary

Compton gamma camera

 Large FOV (~3str)
Kinematical background rejection by comparison of two α angles This Camera is for Astronomy, medical imaging.

gaseous TPC

(time projection chamber) : [containing μ-PIC(MPGD), GEM]

--- energy and 3-D track of a recoil electron

Scintillation camera:

[GSO (Ce) pixel array] --- energy and position of a scattered gamma ray

Reconstruct an incident gamma ray event by event

Scintillator array camera

8×8 multi-anode PMT (MAPMT) HPK H8500

size: 52 × 52 mm² effective area: 49 × 49 mm² anode pitch: 6.1 mm

GSO array (8 × 8 pixels) effective area: $49 \times 49 \text{ mm}^2$ pixel size: $5.8 \times 5.8 \times 13 \text{ mm}^2$ anode pitch: 6.1mm same as the PMT reflector: ESR[©] (3M)

(GSO has a strong radiation hardness)

Improvement of Angular Resolution Now : Angular resolution (FWHM): 6.4° @ 662keV Angular resolution of a Compton camera depends on the energy resolution of scintillator

LaBr₃(Ce) scintillator

Assembly of LaBr₃(Ce) array

We cut $5.8 \times 5.8 \times 15.0$ mm³ pixels out of two $\phi 38 \times 38$ mm³ LaBr₃ crystals and assembled an 8×8 array by our technique.

Saint-Gobain BrilLanCe380 Size:\ophi38\times38mm³

1/2 attenuation length @662keV LaBr₃ (Ce): 18 mm

Effective area : 49 × 49 mm² (=PMT photocathode) Glass window : Quartz (t 2.3 mm) Hermetic package : Aluminum (t 0.5 mm)

Performance of each pixel

To estimate the performance without the effect of gainuniformity (~3) among 64 anodes of MAPMT (H8500)

irradiation of collimated gamma rays to a pixel one by one

Single-anode PMT LaBr₃ array HPK R6236 (2-inch square)

Map of energy Res. of 8 \times 8 pixels Energy resolution (FWHM) @ 356 keV Ave. \pm RMS = 5.5 \pm 0.7 %

4ch readout with H8500

LaBr₃ array MAPMT HPK H8500

Reading system is the one for the GSO array

Image and energy spectrum

Flood field irradiation image by Charge-division method

≻Energy spectrum (¹³³Ba)

Energy resolution (FWHM) of each pixel @ 662 keV (137Cs)

GSO $6 \times 6 \times 13$ mm³ 8×8 array Ave. \pm RMS : $10.8 \pm 1.0\%$

LaBr₃ 6×6×15 mm³ 8×8 array Ave. ± RMS : **5.8 ± 0.9%** Energy (FWHN 13 12 11 /N @ 662 keV [%] 10 9 8

6

5

Energy Resolution (2)

GSO 6×6×13 mm³ 8×8 array: FWHM(%)=(10.4±0.3)

×(E/662keV)^{-0.51±0.01}

LaBr₃ $6 \times 6 \times 15 \text{ mm}^3 8 \times 8 \text{ array:}$ FWHM(%)=(5.7±0.4) $\times (E/662 \text{keV})^{-0.53 \pm 0.01}$

Setup of Compton camera

(8 × 8 LaBr₃ pixels) 2×2

Gaseous TPC

containing $Ar+C_2H_6$ 1atm

Performance of Compton camera

-25

-20

-15

10

50

2

3

X [cm]

Improvement of the angular resolution

Angular resolution (FWHM) @662 keV [degree]

6.4±0.2 (GSO) improved

 4.2 ± 0.3 (LaBr₃)

summary

- We assembled an $8 \times 8 \text{ LaBr}_3$ pixel array in order to improve the angular resolution of Compton Camera.
 - Pixel size : 5.8 \times 5.8 \times 15 mm³
 - Pixel pitch: 6.1mm (the same as that of MAPMT H8500)
 - Package size : $54 \times 54 \times 20 \text{ mm}^3$ (compact)
- Dynamic rage: 80 1000 keV
- Energy resolution of the array with MAPMT (FWHM, @662keV)
 - GSO array $10.7 \pm 1.0 \%$
 - LaBr₃ array $5.8 \pm 0.9 \%$
- Angular resolution of gamma camera (FWHM, @ 662 keV)
 - With GSO array $6.4 \pm 0.2 \text{ deg.}$ With LaBr₃ array $4.2 \pm 0.3 \text{ deg.}$ (improved)
- Future works
 - We assemble more $LaBr_3$ arrays for expanding the effective area of Compton camera.
 - Individual readout system of all anode channels.

