MPGD及びPMT読み出し ASICの開発と応用

谷森達、身内賢太朗、株木重人、 西村広展、服部香里、上野一樹、 黒澤俊介、井田知宏、岩城智、高橋慶在、 永吉勉、折戸玲子、高田淳史、岡田葉子、 竹田敦、関谷洋之、土屋 兼一

「集積回路開発および関連技術に関するワークショップ」2008年11月20~21日 KEK

Outline

- マイクロパターンガス検出器 μ-PIC
- μ-PIC読出しASICと後段回路の開発
- μ-PICの応用
- ASICによるシンチレータ+PMT読出し
- コンプトンカメラの応用
- 読出しシステムの改良計画

μ-PIC読出しASICの開発

Amplifier-Shaper-Discriminator (ASD)

(1) $\tau = 16ns(C_f = 1pF, R_f = 16k\Omega)$ LHC ATLAS TGC用 CXA3183Q (O.Sasaki & M.Yoshida) μ-PIC用に回路変更(波高2倍に)

(2) $\tau = 80 \text{ ns}(C_f = 1 \text{ pF}, R_f = 80 \text{ k} \Omega) \text{ CXA3653Q}$ (2003年試作·量産) ±3V 56.7mW/ch(ASDチップ内42.7mW+LVDSレシーバー14mW)

μ-PIC読出しASIC(CXA3653Q) プリアンプ、メインアンプ、 ベースラインリストラ (1ch分表示) コンパレータ (1ch分表示)

QFP 48ピン

64ch読み出しボード(8x2チップ) ← 21cm _ →

die size 3.1mmx 3.1mm

-SDRAM LVDS 32bit x 2本 Xilinx Virtex-II Pro 2004年に設計 8個(XC2VP30-5FF1152C) 50MHz発振器→FPGA内で100MHz クロックカウンタ(FPGA7)

μ -PICの応用①物質構造解析

- 高速
 巨大分子(たんぱく質)、創薬、材料
 数分間での測定
- 広いダイナミックレンジ
 → 10⁴⁻⁵(積分型検出器: CCD, Imaging Plate)から 10⁷⁻⁸へ

 時分割測定
 反応のダイナミクス、光反応、酵素反応 連続変化を追う (sec~10 msec スライスで繰返し測定)

現在のCCD, Imaging Plateでは困難 ⇒計数型+高分解能画像⇒μ-PICで実現

時分割X線構造解析

100

8.4

200

16.8

300

25.2

時間

400

33.6

Crystal	Ref. #	R−factor (I > 2s)	time (sec.)
C ₄ H ₉ NO ₆	1,406	7.9%	2.1
C ₂₀ H ₃₇ CoN ₆ O ₄	4,361	9.8%	300
$C_{25}H_{26}O_4$	4,565	8.4%	80

400

300

rotation ongle (degree)

Con

0

Reciprocal lattice

MSGC(Micro Strip Gas Chamber) 1999年 y [cm] position (cm) * 9 % o 2

東工大化学科大橋グループ、豊川秀訓氏(SPring-8) 協力:

Time [msec]

[degree]

500

42.0

粉末のX線回折

10cm角 μ−PIC

東エ大化学教室植草研究室との共同実験

μ-PIC性能評価

SPring-8 BL45-XU SAXS X線:13.8 keV

耐計数

協力 伊藤和輝氏(理研播磨)

中性子構造解析(立上げ中) JRR-3 NOPビームライン 中心波長7.6Åの冷中性子を照射 μ -PIC 10cm × 10cm × 0.4cm (Ar 80% + C₂H₆ 9% + ³He 11%)

試料:F12H20 Bragg peak: q=1.02 / nm

エネルギー分解能 5%(FWHM)@0.7MeV

PSA(Pixel Scintillator Array)
GSO (Ce) シンチレータ(日立化成)
6mm x 6mm x 13mm ピクセル
8 x 8 ピクセル
ESR(3M)反射材
OKEN6262AオプティカルグリスにてPMTと接着

~100ユニット必要⇒読出しASIC必要

VATA ASICによるGSO結晶+PMT64ch読出し

PMT ゲイン~10⁶ ASICの入力が狭いため、 アッテネータを使用 ¹³⁷Cs(662keV)全面照射

9 8 7

2

≻

х

1000

2000

3000

4000

5000

6000

ADC [ch]

コンプトンカメラの応用①核医学

新薬の開発、新しい医療ガンマ線カメラとしての開発 10×10×10cm³ TPC コンプトンカメラ

60cm

>天体観測用大型カメラ製作中

無事回収

μ-PIC読出しシステムの改良

μ-PIC読出しシステムの小型化・省電力化 1. プリアンプ+シェーパー+ディスクリミネーター(ASD) Bipolarプロセス→ CMOSプロセス(8ch/chip)測定器開発室藤田講演 (57mW/ch, 4ch/chip) MCM 村上講演 → 電源電圧下げる(アノード・カソード別)、 LVDSドライバ見直し ASIC教育プログラム 12月テープアウト ➡ 用途別に開発 ASDと前段FPGAを基板接続し、 2. ASDとFPGAとの接続 後段FPGAとシリアルデータ転送(設計中) 全chパラレルケーブル X線イメージ FE2007 カソード Ocm角 <u>µ</u> PIC

まとめ

- マイクロパターンガス検出器 μ-PIC読出し用に、 ATLAS TGC ASD(Bipolarプロセス)を変更 ■ ガンマ線検出用GSOシンチレータ+PMTの読出し <u>ICASIC(IDEAS VA)を使用(入力レンジ狭い)</u> ■物質構造解析(X線、中性子)、暗黒物質探索、 コンプトンカメラ(天体観測、核医学)で使用 μ-PIC読出しシステムの小型化・省電力化進行中 ■ CMOS ASIC 測定器開発室⇒教育プログラム (用途別開発)